Stackelberg Driver Model for Continual Policy Improvement in
Scenario-Based Closed-Loop Autonomous Driving
- URL: http://arxiv.org/abs/2309.14235v3
- Date: Tue, 5 Dec 2023 07:41:23 GMT
- Title: Stackelberg Driver Model for Continual Policy Improvement in
Scenario-Based Closed-Loop Autonomous Driving
- Authors: Haoyi Niu, Qimao Chen, Yingyue Li, Yi Zhang, Jianming Hu
- Abstract summary: adversarial generation methods have emerged as a class of efficient approaches to synthesize safety-critical scenarios.
We tailor the Stackelberg Driver Model (SDM) to accurately characterize the hierarchical nature of vehicle interaction dynamics.
Our algorithm exhibits superior performance compared to several baselines especially in higher dimensional scenarios.
- Score: 5.765939495779461
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The deployment of autonomous vehicles (AVs) has faced hurdles due to the
dominance of rare but critical corner cases within the long-tail distribution
of driving scenarios, which negatively affects their overall performance. To
address this challenge, adversarial generation methods have emerged as a class
of efficient approaches to synthesize safety-critical scenarios for AV testing.
However, these generated scenarios are often underutilized for AV training,
resulting in the potential for continual AV policy improvement remaining
untapped, along with a deficiency in the closed-loop design needed to achieve
it. Therefore, we tailor the Stackelberg Driver Model (SDM) to accurately
characterize the hierarchical nature of vehicle interaction dynamics,
facilitating iterative improvement by engaging background vehicles (BVs) and AV
in a sequential game-like interaction paradigm. With AV acting as the leader
and BVs as followers, this leader-follower modeling ensures that AV would
consistently refine its policy, always taking into account the additional
information that BVs play the best response to challenge AV. Extensive
experiments have shown that our algorithm exhibits superior performance
compared to several baselines especially in higher dimensional scenarios,
leading to substantial advancements in AV capabilities while continually
generating progressively challenging scenarios. Code is available at
https://github.com/BlueCat-de/SDM.
Related papers
- Generative Diffusion-based Contract Design for Efficient AI Twins Migration in Vehicular Embodied AI Networks [55.15079732226397]
Embodied AI is a rapidly advancing field that bridges the gap between cyberspace and physical space.
In VEANET, embodied AI twins act as in-vehicle AI assistants to perform diverse tasks supporting autonomous driving.
arXiv Detail & Related papers (2024-10-02T02:20:42Z) - Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
Connected Autonomous Vehicles (CAVs) have begun to open road testing around the world, but their safety and efficiency performance in complex scenarios is still not satisfactory.
This paper proposes CoDrivingLLM, an interactive and learnable LLM-driven cooperative driving framework.
arXiv Detail & Related papers (2024-09-19T14:36:00Z) - CAV-AHDV-CAV: Mitigating Traffic Oscillations for CAVs through a Novel Car-Following Structure and Reinforcement Learning [8.63981338420553]
Connected and Automated Vehicles (CAVs) offer a promising solution to the challenges of mixed traffic with both CAVs and Human-Driven Vehicles (HDVs)
While HDVs rely on limited information, CAVs can leverage data from other CAVs for better decision-making.
We propose a novel "CAV-AHDV-CAV" car-following framework that treats the sequence of HDVs between two CAVs as a single entity.
arXiv Detail & Related papers (2024-06-23T15:38:29Z) - Physical Backdoor Attack can Jeopardize Driving with Vision-Large-Language Models [53.701148276912406]
Vision-Large-Language-models (VLMs) have great application prospects in autonomous driving.
BadVLMDriver is the first backdoor attack against VLMs for autonomous driving that can be launched in practice using physical objects.
BadVLMDriver achieves a 92% attack success rate in inducing a sudden acceleration when coming across a pedestrian holding a red balloon.
arXiv Detail & Related papers (2024-04-19T14:40:38Z) - Development and Assessment of Autonomous Vehicles in Both Fully
Automated and Mixed Traffic Conditions [0.0]
The paper presents a multi-stage approach, starting with the development of a single AV and progressing to connected AVs.
A survey is conducted to validate the driving performance of the AV and will be utilized for a mixed traffic case study.
Results show that using deep reinforcement learning, the AV acquired driving behavior that reached human driving performance.
The adoption of sharing and caring based V2V communication within AV networks enhances their driving behavior, aids in more effective action planning, and promotes collaborative behavior amongst the AVs.
arXiv Detail & Related papers (2023-12-08T02:40:11Z) - Continual Driving Policy Optimization with Closed-Loop Individualized Curricula [2.903150959383393]
We develop a continuous driving policy optimization framework featuring Closed-Loop Individualized Curricula (CLIC)
CLIC frames AV Evaluation as a collision prediction task, where it estimates the chance of AV failures in these scenarios at each iteration.
We show that CLIC surpasses other curriculum-based training strategies, showing substantial improvement in managing risky scenarios.
arXiv Detail & Related papers (2023-09-25T15:14:54Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - Evolving Testing Scenario Generation Method and Intelligence Evaluation
Framework for Automated Vehicles [12.670180834651912]
This paper proposes an evolving scenario generation method that utilizes deep reinforcement learning (DRL) to create human-like BVs for testing and intelligence evaluation of automated vehicles (AVs)
The results demonstrate that the proposed evolving scenario exhibits the highest level of complexity compared to other baseline scenarios and has more than 85% similarity to naturalistic driving data.
arXiv Detail & Related papers (2023-06-12T14:26:12Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Intersection focused Situation Coverage-based Verification and
Validation Framework for Autonomous Vehicles Implemented in CARLA [1.1602089225841632]
We present a situation coverage-based (SitCov) AV-testing framework for the verification and validation (V&V) and safety assurance of AVs.
SitCov AV-testing framework focuses on vehicle-to-vehicle interaction on a road intersection under different environmental and intersection configuration situations.
Our code is publicly available online, anyone can use our SitCov AV-testing framework and use it or build further on top of it.
arXiv Detail & Related papers (2021-12-24T02:56:56Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.