論文の概要: Assessing Utility of Differential Privacy for RCTs
- arxiv url: http://arxiv.org/abs/2309.14581v1
- Date: Tue, 26 Sep 2023 00:10:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 03:41:25.530790
- Title: Assessing Utility of Differential Privacy for RCTs
- Title(参考訳): RCTにおける差分プライバシーの有用性の評価
- Authors: Soumya Mukherjee, Aratrika Mustafi, Aleksandra Slavković, Lars Vilhuber,
- Abstract要約: RCTの公開分析に強いプライバシー保護手法(acDP保証付き)が与える影響を実証的に評価する。
比較的簡単なDPベースの手法により、公開データの推測正当性保護が可能であることが判明した。
- 参考スコア(独自算出の注目度): 44.15661493715815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Randomized control trials, RCTs, have become a powerful tool for assessing the impact of interventions and policies in many contexts. They are considered the gold-standard for inference in the biomedical fields and in many social sciences. Researchers have published an increasing number of studies that rely on RCTs for at least part of the inference, and these studies typically include the response data collected, de-identified and sometimes protected through traditional disclosure limitation methods. In this paper, we empirically assess the impact of strong privacy-preservation methodology (with \ac{DP} guarantees), on published analyses from RCTs, leveraging the availability of replication packages (research compendia) in economics and policy analysis. We provide simulations studies and demonstrate how we can replicate the analysis in a published economics article on privacy-protected data under various parametrizations. We find that relatively straightforward DP-based methods allow for inference-valid protection of the published data, though computational issues may limit more complex analyses from using these methods. The results have applicability to researchers wishing to share RCT data, especially in the context of low- and middle-income countries, with strong privacy protection.
- Abstract(参考訳): ランダム化制御試験(RCT)は、多くの文脈における介入や政策の影響を評価する強力なツールとなっている。
バイオメディカル分野や多くの社会科学における推論における金の標準とみなされている。
研究者は、推論の少なくとも一部にRCTに依存する研究が増えていることを公表し、これらの研究は典型的には、伝統的な開示制限法によって収集され、特定され、時には保護される応答データを含んでいる。
本稿では, 経済・政策分析における複製パッケージ(コンペンディアス)の利用性を利用して, RCTの公開分析に対する強力なプライバシ保護手法(ac{DP} 保証付き)の効果を実証的に評価する。
各種パラメトリゼーションの下でのプライバシ保護データに関する論文で、シミュレーション研究を行い、分析を再現する方法を実証する。
比較的単純なDPベースの手法では、これらの手法を用いることでより複雑な解析を制限できるが、公表されたデータの推測正当性を保護することができる。
結果は、特に低所得国や中所得国の状況において、RCTデータを強力なプライバシー保護で共有したい研究者に応用できる。
関連論文リスト
- Statistical Analysis of Policy Space Compression Problem [54.1754937830779]
政策探索手法は強化学習において重要であり、継続的な状態反応と部分的に観察可能な問題に対処するための枠組みを提供する。
政策圧縮による政策空間の削減は、学習プロセスを加速するための強力で報酬のないアプローチとして現れます。
この手法は方針空間をより小さく代表的な集合に凝縮し、元の効果のほとんどを維持している。
論文 参考訳(メタデータ) (2024-11-15T02:46:55Z) - An applied Perspective: Estimating the Differential Identifiability Risk of an Exemplary SOEP Data Set [2.66269503676104]
基本的統計的クエリの集合に対して,リスクメトリックを効率的に計算する方法を示す。
実世界の科学的データセットに基づいた実証分析は、現実的な条件下でのリスクの計算方法に関する知識を拡大します。
論文 参考訳(メタデータ) (2024-07-04T17:50:55Z) - Privacy Impact Assessments in the Wild: A Scoping Review [1.7677916783208343]
プライバシ・インパクト・アセスメント(PIAs)は、プロジェクトやシステムのプライバシ・インパクトを評価するための体系的なプロセスを提供する。
PIAは、設計によるプライバシに対する主要なアプローチの1つであり、脅威とコントロールの早期識別をサポートする。
質的かつ定量的な、このトピックに関するより基本的な研究には、依然として大きなニーズがある。
論文 参考訳(メタデータ) (2024-02-17T05:07:10Z) - Improved Policy Evaluation for Randomized Trials of Algorithmic Resource
Allocation [54.72195809248172]
提案する新しい概念を応用した新しい推定器を提案する。
我々は,このような推定器が,サンプル手段に基づく一般的な推定器よりも精度が高いことを理論的に証明した。
論文 参考訳(メタデータ) (2023-02-06T05:17:22Z) - CEDAR: Communication Efficient Distributed Analysis for Regressions [9.50726756006467]
患者レベルのデータを共有することなく、複数のEHRデータベース上での分散学習への関心が高まっている。
本稿では,局所的な最適推定値を集約する通信効率のよい新しい手法を提案する。
本稿では,統計的推測法と差分プライバシーに関する理論的検討を行い,シミュレーションおよび実データ解析におけるその性能評価を行う。
論文 参考訳(メタデータ) (2022-07-01T09:53:44Z) - Reinforcement Learning with Heterogeneous Data: Estimation and Inference [84.72174994749305]
人口の不均一性に関する逐次的決定問題に対処するために,K-ヘテロ・マルコフ決定過程(K-ヘテロ・MDP)を導入する。
本稿では、ある政策の価値を推定するための自己クラスタ化政策評価(ACPE)と、ある政策クラスにおける最適な政策を推定するための自己クラスタ化政策イテレーション(ACPI)を提案する。
理論的な知見を裏付けるシミュレーションを行い,MIMIC-III標準データセットの実証的研究を行った。
論文 参考訳(メタデータ) (2022-01-31T20:58:47Z) - Differential privacy and robust statistics in high dimensions [49.50869296871643]
高次元Propose-Test-Release (HPTR) は指数的メカニズム、頑健な統計、Propose-Test-Release メカニズムという3つの重要なコンポーネントの上に構築されている。
本論文では,HPTRが複数のシナリオで最適サンプル複雑性をほぼ達成していることを示す。
論文 参考訳(メタデータ) (2021-11-12T06:36:40Z) - A Survey on Causal Inference [64.45536158710014]
因果推論は統計学、コンピュータ科学、教育、公共政策、経済学など、多くの分野において重要な研究トピックである。
観測データに対する様々な因果効果推定法が誕生した。
論文 参考訳(メタデータ) (2020-02-05T21:35:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。