論文の概要: An applied Perspective: Estimating the Differential Identifiability Risk of an Exemplary SOEP Data Set
- arxiv url: http://arxiv.org/abs/2407.04084v1
- Date: Thu, 4 Jul 2024 17:50:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 15:20:13.640911
- Title: An applied Perspective: Estimating the Differential Identifiability Risk of an Exemplary SOEP Data Set
- Title(参考訳): 応用視点:例SOEPデータセットの差分識別可能性リスクの推定
- Authors: Jonas Allmann, Saskia Nuñez von Voigt, Florian Tschorsch,
- Abstract要約: 基本的統計的クエリの集合に対して,リスクメトリックを効率的に計算する方法を示す。
実世界の科学的データセットに基づいた実証分析は、現実的な条件下でのリスクの計算方法に関する知識を拡大します。
- 参考スコア(独自算出の注目度): 2.66269503676104
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Using real-world study data usually requires contractual agreements where research results may only be published in anonymized form. Requiring formal privacy guarantees, such as differential privacy, could be helpful for data-driven projects to comply with data protection. However, deploying differential privacy in consumer use cases raises the need to explain its underlying mechanisms and the resulting privacy guarantees. In this paper, we thoroughly review and extend an existing privacy metric. We show how to compute this risk metric efficiently for a set of basic statistical queries. Our empirical analysis based on an extensive, real-world scientific data set expands the knowledge on how to compute risks under realistic conditions, while presenting more challenges than solutions.
- Abstract(参考訳): 実世界の研究データを使用するには、通常、研究結果を匿名形式でのみ公開できる契約契約が必要である。
差分プライバシーのような正式なプライバシー保証を必要とすることは、データ保護に準拠するデータ駆動プロジェクトに役立つだろう。
しかし、消費者のユースケースに差分プライバシーを配置することは、その基盤となるメカニズムと結果として生じるプライバシー保証を説明する必要が生じる。
本稿では,既存のプライバシー基準を徹底的に見直し,拡張する。
基本的統計的クエリの集合に対して、このリスクメトリックを効率的に計算する方法を示す。
我々の実世界の科学的データセットに基づく実証分析は、現実的な条件下でのリスクの計算方法に関する知識を拡大するとともに、ソリューションよりも多くの課題を提示します。
関連論文リスト
- Empirical Mean and Frequency Estimation Under Heterogeneous Privacy: A Worst-Case Analysis [5.755004576310333]
微分プライバシー(DP)は、現在プライバシーを測定するための金の標準である。
異種プライバシー制約を考慮した一変量データに対する経験的平均推定とカテゴリーデータに対する周波数推定の問題点を考察する。
提案アルゴリズムは,PAC誤差と平均二乗誤差の両面から最適性を証明し,他のベースライン手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-15T22:46:02Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
論文 参考訳(メタデータ) (2024-07-04T08:29:27Z) - Lazy Data Practices Harm Fairness Research [49.02318458244464]
本稿では,公正な機械学習データセットを包括的に分析し,不反射的手法がアルゴリズム的公正度発見の到達度と信頼性をいかに妨げているかを示す。
本分析では,(1)データと評価における特定の保護属性の表現のテクスブフラック,(2)データ前処理におけるマイノリティの広汎なテキストbf,(3)フェアネス研究の一般化を脅かすテキストbfopaqueデータ処理の3つの分野について検討した。
この研究は、公正なMLにおけるデータプラクティスの批判的な再評価の必要性を強調し、データセットのソーシングと使用の両方を改善するための指針を提供する。
論文 参考訳(メタデータ) (2024-04-26T09:51:24Z) - A Summary of Privacy-Preserving Data Publishing in the Local Setting [0.6749750044497732]
統計開示制御は、機密情報を匿名化して暴露するリスクを最小限にすることを目的としている。
マイクロデータの復号化に使用される現在のプライバシ保存技術について概説し、様々な開示シナリオに適したプライバシ対策を掘り下げ、情報損失と予測性能の指標を評価する。
論文 参考訳(メタデータ) (2023-12-19T04:23:23Z) - Conditional Density Estimations from Privacy-Protected Data [0.0]
プライバシ保護されたデータセットからのシミュレーションに基づく推論手法を提案する。
本稿では,感染性疾患モデルと通常の線形回帰モデルに基づく個別時系列データについて述べる。
論文 参考訳(メタデータ) (2023-10-19T14:34:17Z) - An In-Depth Examination of Requirements for Disclosure Risk Assessment [6.0631983658449435]
我々は、開示リスクを定量化する提案は、事前に特定された客観的基準に基づいて行うべきであると論じる。
本稿では,この手法をデシラタを用いて絶対開示リスクフレームワークの評価を行う。
すべてのデシデラタを満たすことは不可能であるが、反実比較が最も満足すると結論付けている。
論文 参考訳(メタデータ) (2023-10-13T20:36:29Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Towards Generalizable Data Protection With Transferable Unlearnable
Examples [50.628011208660645]
本稿では、転送不可能な例を生成することによって、新しい一般化可能なデータ保護手法を提案する。
私たちの知る限りでは、これはデータ分散の観点からデータのプライバシを調べる最初のソリューションです。
論文 参考訳(メタデータ) (2023-05-18T04:17:01Z) - Private Set Generation with Discriminative Information [63.851085173614]
異なるプライベートなデータ生成は、データプライバシの課題に対する有望な解決策である。
既存のプライベートな生成モデルは、合成サンプルの有用性に苦慮している。
我々は,最先端アプローチのサンプルユーティリティを大幅に改善する,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:02:55Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - Data-driven Regularized Inference Privacy [33.71757542373714]
データを衛生化するためのデータ駆動推論プライバシ保護フレームワークを提案する。
我々は変分法に基づく推論プライバシ・フレームワークを開発する。
プライバシー基準を推定するための実証的手法を提案する。
論文 参考訳(メタデータ) (2020-10-10T08:42:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。