Recent Progress in Energy Management of Connected Hybrid Electric
Vehicles Using Reinforcement Learning
- URL: http://arxiv.org/abs/2308.14602v2
- Date: Sat, 23 Dec 2023 19:21:13 GMT
- Title: Recent Progress in Energy Management of Connected Hybrid Electric
Vehicles Using Reinforcement Learning
- Authors: Min Hua, Bin Shuai, Quan Zhou, Jinhai Wang, Yinglong He, Hongming Xu
- Abstract summary: The shift towards electrifying transportation aims to curb environmental concerns related to fossil fuel consumption.
The evolution of energy management systems (EMS) from HEVs to connected hybrid electric vehicles (CHEVs) represent a pivotal shift.
This review bridges the gap, highlighting challenges, advancements, and potential contributions of RL-based solutions for future sustainable transportation systems.
- Score: 6.851787321368938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing adoption of hybrid electric vehicles (HEVs) presents a
transformative opportunity for revolutionizing transportation energy systems.
The shift towards electrifying transportation aims to curb environmental
concerns related to fossil fuel consumption. This necessitates efficient energy
management systems (EMS) to optimize energy efficiency. The evolution of EMS
from HEVs to connected hybrid electric vehicles (CHEVs) represent a pivotal
shift. For HEVs, EMS now confronts the intricate energy cooperation
requirements of CHEVs, necessitating advanced algorithms for route
optimization, charging coordination, and load distribution. Challenges persist
in both domains, including optimal energy utilization for HEVs, and cooperative
eco-driving control (CED) for CHEVs across diverse vehicle types. Reinforcement
learning (RL) stands out as a promising tool for addressing these challenges.
Specifically, within the realm of CHEVs, the application of multi-agent
reinforcement learning (MARL) emerges as a powerful approach for effectively
tackling the intricacies of CED control. Despite extensive research, few
reviews span from individual vehicles to multi-vehicle scenarios. This review
bridges the gap, highlighting challenges, advancements, and potential
contributions of RL-based solutions for future sustainable transportation
systems.
Related papers
- Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
"Smart" electric vehicle charging stations (EVCSs) will be a key step toward achieving green transportation.
We investigate charge manipulation attacks (CMAs) against EV charging, in which an attacker manipulates the information exchanged during smart charging operations.
We propose an unsupervised deep learning-based mechanism to detect CMAs by monitoring the parameters involved in EV charging.
arXiv Detail & Related papers (2023-10-18T18:38:59Z) - MARL for Decentralized Electric Vehicle Charging Coordination with V2V
Energy Exchange [5.442116840518914]
This paper addresses the EV charging coordination by considering vehicle-to-vehicle (V2V) energy exchange.
We propose a Multi-Agent Reinforcement Learning (MARL) approach to coordinate EV charging with V2V energy exchange.
arXiv Detail & Related papers (2023-08-27T14:06:21Z) - Federated Reinforcement Learning for Electric Vehicles Charging Control
on Distribution Networks [42.04263644600909]
Multi-agent deep reinforcement learning (MADRL) has proven its effectiveness in EV charging control.
Existing MADRL-based approaches fail to consider the natural power flow of EV charging/discharging in the distribution network.
This paper proposes a novel approach that combines multi-EV charging/discharging with a radial distribution network (RDN) operating under optimal power flow.
arXiv Detail & Related papers (2023-08-17T05:34:46Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
This paper develops an optimal EV charging/discharging control strategy for different EV users under dynamic environments.
A horizontal federated reinforcement learning (HFRL)-based method is proposed to fit various users' behaviors and dynamic environments.
Simulation results illustrate that the proposed real-time EV charging/discharging control strategy can perform well among various factors.
arXiv Detail & Related papers (2022-10-04T08:22:46Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - A new Hyper-heuristic based on Adaptive Simulated Annealing and
Reinforcement Learning for the Capacitated Electric Vehicle Routing Problem [9.655068751758952]
Electric vehicles (EVs) have been adopted in urban areas to reduce environmental pollution and global warming.
There are still deficiencies in routing the trajectories of last-mile logistics that continue to impact social and economic sustainability.
This paper proposes a hyper-heuristic approach called Hyper-heuristic Adaptive Simulated Annealing with Reinforcement Learning.
arXiv Detail & Related papers (2022-06-07T11:10:38Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Fed-BEV: A Federated Learning Framework for Modelling Energy Consumption
of Battery Electric Vehicles [5.817576247456001]
Battery electric vehicles (BEVs) exclusively use chemical energy stored in their battery packs for propulsion.
We propose a novel framework for modelling energy consumption for BEVs (Fed-BEV)
More specifically, a group of BEVs involved in the Fed-BEV framework can learn from each other to jointly enhance their energy consumption model.
arXiv Detail & Related papers (2021-08-05T01:56:09Z) - Risk Adversarial Learning System for Connected and Autonomous Vehicle
Charging [43.42105971560163]
We study the design of a rational decision support system (RDSS) for a connected and autonomous vehicle charging infrastructure (CAV-CI)
In the considered CAV-CI, the distribution system operator (DSO) deploys electric vehicle supply equipment (EVSE) to provide an EV charging facility for human-driven connected vehicles (CVs) and autonomous vehicles (AVs)
The charging request by the human-driven EV becomes irrational when it demands more energy and charging period than its actual need.
We propose a novel risk adversarial multi-agent learning system (ALS) for CAV-CI to solve
arXiv Detail & Related papers (2021-08-02T02:38:15Z) - Efficient algorithms for electric vehicles' min-max routing problem [4.640835690336652]
An increase in greenhouse gases emission from the transportation sector has led companies and the government to elevate and support the production of electric vehicles (EV)
With recent developments in urbanization and e-commerce, transportation companies are replacing their conventional fleet with EVs to strengthen the efforts for sustainable and environment-friendly operations.
deploying a fleet of EVs asks for efficient routing and recharging strategies to alleviate their limited range and mitigate the battery degradation rate.
arXiv Detail & Related papers (2020-08-07T18:45:26Z) - Transferred Energy Management Strategies for Hybrid Electric Vehicles
Based on Driving Conditions Recognition [16.346064265993782]
Energy management strategies (EMSs) decide the potential of energy conservation and emission reduction.
This work presents a transferred EMS for a parallel HEV via combining the reinforcement learning method and driving conditions recognition.
arXiv Detail & Related papers (2020-07-16T13:57:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.