SLIQ: Quantum Image Similarity Networks on Noisy Quantum Computers
- URL: http://arxiv.org/abs/2309.15259v1
- Date: Tue, 26 Sep 2023 20:33:26 GMT
- Title: SLIQ: Quantum Image Similarity Networks on Noisy Quantum Computers
- Authors: Daniel Silver, Tirthak Patel, Aditya Ranjan, Harshitta Gandhi, William
Cutler, Devesh Tiwari
- Abstract summary: SLIQ is the first open-sourced work for resource-efficient quantum similarity detection networks.
It is built with practical and effective quantum learning and variance-reducing algorithms.
- Score: 9.537660328139038
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exploration into quantum machine learning has grown tremendously in recent
years due to the ability of quantum computers to speed up classical programs.
However, these efforts have yet to solve unsupervised similarity detection
tasks due to the challenge of porting them to run on quantum computers. To
overcome this challenge, we propose SLIQ, the first open-sourced work for
resource-efficient quantum similarity detection networks, built with practical
and effective quantum learning and variance-reducing algorithms.
Related papers
- Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices [0.0]
This study explores the intersection of quantum computing and Machine Learning (ML)
It evaluates the effectiveness of hybrid quantum-classical algorithms, such as the data re-uploading scheme and the patch Generative Adversarial Networks (GAN) model, on small-scale quantum devices.
arXiv Detail & Related papers (2024-04-01T20:55:03Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Near-Term Quantum Computing Techniques: Variational Quantum Algorithms,
Error Mitigation, Circuit Compilation, Benchmarking and Classical Simulation [5.381727213688375]
We are still a long way from reaching the maturity of a full-fledged quantum computer.
An outstanding challenge is to come up with an application that can reliably carry out a nontrivial task.
Several near-term quantum computing techniques have been proposed to characterize and mitigate errors.
arXiv Detail & Related papers (2022-11-16T07:53:15Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Quantum Computing for Power Flow Algorithms: Testing on real Quantum
Computers [0.0]
This paper goes beyond quantum computing simulations and performs an experimental application of Quantum Computing for power systems on a real quantum computer.
We use five different quantum computers, apply the HHL quantum algorithm, and examine the impact of current noisy quantum hardware on the accuracy and speed of an AC power flow algorithm.
arXiv Detail & Related papers (2022-04-29T11:53:16Z) - An unsupervised feature learning for quantum-classical convolutional
network with applications to fault detection [5.609958919699706]
We present a simple unsupervised method for quantum-classical convolutional networks to learn a hierarchy of quantum feature extractors.
The main contribution of the proposed approach is to use the $K$-means clustering to maximize the difference of quantum properties in quantum circuit ansatz.
arXiv Detail & Related papers (2021-07-17T03:16:59Z) - Quantum Computing for Location Determination [6.141741864834815]
We introduce an example for the expected gain of using quantum algorithms for location determination research.
The proposed quantum algorithm has a complexity that is exponentially better than its classical algorithm version, both in space and running time.
We discuss both software and hardware research challenges and opportunities that researchers can build on to explore this exciting new domain.
arXiv Detail & Related papers (2021-06-11T15:39:35Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.