RSF-Conv: Rotation-and-Scale Equivariant Fourier Parameterized Convolution for Retinal Vessel Segmentation
- URL: http://arxiv.org/abs/2309.15638v2
- Date: Fri, 6 Sep 2024 13:21:12 GMT
- Title: RSF-Conv: Rotation-and-Scale Equivariant Fourier Parameterized Convolution for Retinal Vessel Segmentation
- Authors: Zihong Sun, Hong Wang, Qi Xie, Yefeng Zheng, Deyu Meng,
- Abstract summary: We propose a rotation-and-scale equivariant Fourier parameterized convolution (RSF-Conv) specifically for retinal vessel segmentation.
As a general module, RSF-Conv can be integrated into existing networks in a plug-and-play manner.
To demonstrate the effectiveness of RSF-Conv, we also apply RSF-Conv+U-Net and RSF-Conv+Iter-Net to retinal artery/vein classification.
- Score: 58.618797429661754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retinal vessel segmentation is of great clinical significance for the diagnosis of many eye-related diseases, but it is still a formidable challenge due to the intricate vascular morphology. With the skillful characterization of the translation symmetry existing in retinal vessels, convolutional neural networks (CNNs) have achieved great success in retinal vessel segmentation. However, the rotation-and-scale symmetry, as a more widespread image prior in retinal vessels, fails to be characterized by CNNs. Therefore, we propose a rotation-and-scale equivariant Fourier parameterized convolution (RSF-Conv) specifically for retinal vessel segmentation, and provide the corresponding equivariance analysis. As a general module, RSF-Conv can be integrated into existing networks in a plug-and-play manner while significantly reducing the number of parameters. For instance, we replace the traditional convolution filters in U-Net and Iter-Net with RSF-Convs, and faithfully conduct comprehensive experiments. RSF-Conv+U-Net and RSF-Conv+Iter-Net not only have slight advantages under in-domain evaluation, but more importantly, outperform all comparison methods by a significant margin under out-of-domain evaluation. It indicates the remarkable generalization of RSF-Conv, which holds greater practical clinical significance for the prevalent cross-device and cross-hospital challenges in clinical practice. To comprehensively demonstrate the effectiveness of RSF-Conv, we also apply RSF-Conv+U-Net and RSF-Conv+Iter-Net to retinal artery/vein classification and achieve promising performance as well, indicating its clinical application potential.
Related papers
- Region Guided Attention Network for Retinal Vessel Segmentation [19.587662416331682]
We present a lightweight retinal vessel segmentation network based on the encoder-decoder mechanism with region-guided attention.
Dice loss penalises false positives and false negatives equally, encouraging the model to generate more accurate segmentation.
Experiments on a benchmark dataset show better performance (0.8285, 0.8098, 0.9677, and 0.8166 recall, precision, accuracy and F1 score respectively) compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-07-22T00:08:18Z) - SAM-VMNet: Deep Neural Networks For Coronary Angiography Vessel Segmentation [2.6879908098704544]
We propose a novel architecture, SAM-VMNet, which combines the powerful feature extraction capability of MedSAM with the advantage of the linear complexity of VM-UNet.
Experimental results show that the SAM-VMNet architecture performs excellently in the CTA image segmentation task, with a segmentation accuracy of up to 98.32% and a sensitivity of up to 99.33%.
arXiv Detail & Related papers (2024-06-01T16:45:33Z) - Leveraging Frequency Domain Learning in 3D Vessel Segmentation [50.54833091336862]
In this study, we leverage Fourier domain learning as a substitute for multi-scale convolutional kernels in 3D hierarchical segmentation models.
We show that our novel network achieves remarkable dice performance (84.37% on ASACA500 and 80.32% on ImageCAS) in tubular vessel segmentation tasks.
arXiv Detail & Related papers (2024-01-11T19:07:58Z) - LMBiS-Net: A Lightweight Multipath Bidirectional Skip Connection based
CNN for Retinal Blood Vessel Segmentation [0.0]
Blinding eye diseases are often correlated with altered retinal morphology, which can be clinically identified by segmenting retinal structures in fundus images.
Deep learning has shown promise in medical image segmentation, but its reliance on repeated convolution and pooling operations can hinder the representation of edge information.
We propose a lightweight pixel-level CNN named LMBiS-Net for the segmentation of retinal vessels with an exceptionally low number of learnable parameters.
arXiv Detail & Related papers (2023-09-10T09:03:53Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - VAFO-Loss: VAscular Feature Optimised Loss Function for Retinal
Artery/Vein Segmentation [7.670940374203646]
Two common vascular features, vessel density and fractal dimension, are identified to be sensitive to intra-segment misclassification.
We show that incorporating our end-to-end VAFO-Loss in standard segmentation networks indeed improves vascular feature estimation.
We also report a technically interesting finding that the trained segmentation network, albeit biased by the feature optimised loss VAFO-Loss, shows statistically significant improvement in segmentation metrics.
arXiv Detail & Related papers (2022-03-12T12:40:20Z) - RetiNerveNet: Using Recursive Deep Learning to Estimate Pointwise 24-2
Visual Field Data based on Retinal Structure [109.33721060718392]
glaucoma is the leading cause of irreversible blindness in the world, affecting over 70 million people.
Due to the Standard Automated Perimetry (SAP) test's innate difficulty and its high test-retest variability, we propose the RetiNerveNet.
arXiv Detail & Related papers (2020-10-15T03:09:08Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
We propose a multi-task deep neural network with spatial activation mechanism to segment full retinal vessel, artery and vein simultaneously.
The proposed network achieves pixel-wise accuracy of 95.70% for vessel segmentation, and A/V classification accuracy of 94.50%, which is the state-of-the-art performance for both tasks.
arXiv Detail & Related papers (2020-07-18T05:46:47Z) - ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New
Model [41.444917622855606]
We release a dedicated OCT-A SEgmentation dataset (ROSE), which consists of 229 OCT-A images with vessel annotations at either centerline-level or pixel level.
Secondly, we propose a novel Split-based Coarse-to-Fine vessel segmentation network (SCF-Net), with the ability to detect thick and thin vessels separately.
In the SCF-Net, a split-based coarse segmentation (SCS) module is first introduced to produce a preliminary confidence map of vessels, and a split-based refinement (SRN) module is then used to optimize the shape/contour of
arXiv Detail & Related papers (2020-07-10T06:54:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.