SAM-VMNet: Deep Neural Networks For Coronary Angiography Vessel Segmentation
- URL: http://arxiv.org/abs/2406.00492v1
- Date: Sat, 1 Jun 2024 16:45:33 GMT
- Title: SAM-VMNet: Deep Neural Networks For Coronary Angiography Vessel Segmentation
- Authors: Xueying Zeng, Baixiang Huang, Yu Luo, Guangyu Wei, Songyan He, Yushuang Shao,
- Abstract summary: We propose a novel architecture, SAM-VMNet, which combines the powerful feature extraction capability of MedSAM with the advantage of the linear complexity of VM-UNet.
Experimental results show that the SAM-VMNet architecture performs excellently in the CTA image segmentation task, with a segmentation accuracy of up to 98.32% and a sensitivity of up to 99.33%.
- Score: 2.6879908098704544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coronary artery disease (CAD) is one of the most prevalent diseases in the cardiovascular field and one of the major contributors to death worldwide. Computed Tomography Angiography (CTA) images are regarded as the authoritative standard for the diagnosis of coronary artery disease, and by performing vessel segmentation and stenosis detection on CTA images, physicians are able to diagnose coronary artery disease more accurately. In order to combine the advantages of both the base model and the domain-specific model, and to achieve high-precision and fully-automatic segmentation and detection with a limited number of training samples, we propose a novel architecture, SAM-VMNet, which combines the powerful feature extraction capability of MedSAM with the advantage of the linear complexity of the visual state-space model of VM-UNet, giving it faster inferences than Vision Transformer with faster inference speed and stronger data processing capability, achieving higher segmentation accuracy and stability for CTA images. Experimental results show that the SAM-VMNet architecture performs excellently in the CTA image segmentation task, with a segmentation accuracy of up to 98.32% and a sensitivity of up to 99.33%, which is significantly better than other existing models and has stronger domain adaptability. Comprehensive evaluation of the CTA image segmentation task shows that SAM-VMNet accurately extracts the vascular trunks and capillaries, demonstrating its great potential and wide range of application scenarios for the vascular segmentation task, and also laying a solid foundation for further stenosis detection.
Related papers
- MAPUNetR: A Hybrid Vision Transformer and U-Net Architecture for Efficient and Interpretable Medical Image Segmentation [0.0]
We introduce MAPUNetR, a novel architecture that synergizes the strengths of transformer models with the proven U-Net framework for medical image segmentation.
Our model addresses the resolution preservation challenge and incorporates attention maps highlighting segmented regions, increasing accuracy and interpretability.
Our experiments show that the model maintains stable performance and potential as a powerful tool for medical image segmentation in clinical practice.
arXiv Detail & Related papers (2024-10-29T16:52:57Z) - Towards a vision foundation model for comprehensive assessment of Cardiac MRI [11.838157772803282]
We introduce a vision foundation model trained for cardiac magnetic resonance imaging (CMR) assessment.
We finetune the model in supervised way for 9 clinical tasks typical to a CMR workflow.
We demonstrate improved accuracy and robustness across all tasks, over a range of available labeled dataset sizes.
arXiv Detail & Related papers (2024-10-02T15:32:01Z) - OCTAMamba: A State-Space Model Approach for Precision OCTA Vasculature Segmentation [10.365417594185685]
We propose OCTAMamba, a novel U-shaped network based on the Mamba architecture to segment vasculature in OCTA accurately.
OCTAMamba integrates a Quad Stream Efficient Mining Embedding Module for local feature extraction, a Multi-Scale Dilated Asymmetric Convolution Module to capture multi-scale vasculature, and a Focused Feature Recalibration Module to filter noise and highlight target areas.
Our method achieves efficient global modeling and local feature extraction while maintaining linear complexity, making it suitable for low-computation medical applications.
arXiv Detail & Related papers (2024-09-12T12:47:34Z) - AGFA-Net: Attention-Guided and Feature-Aggregated Network for Coronary Artery Segmentation using Computed Tomography Angiography [5.583495103569884]
We propose an attention-guided, feature-aggregated 3D deep network (AGFA-Net) for coronary artery segmentation using CCTA images.
AGFA-Net leverages attention mechanisms and feature refinement modules to capture salient features and enhance segmentation accuracy.
Evaluation on a dataset comprising 1,000 CCTA scans demonstrates AGFA-Net's superior performance, achieving an average Dice coefficient similarity of 86.74% and a Hausdorff distance of 0.23 mm.
arXiv Detail & Related papers (2024-06-13T01:04:47Z) - Generalist Vision Foundation Models for Medical Imaging: A Case Study of
Segment Anything Model on Zero-Shot Medical Segmentation [5.547422331445511]
We report quantitative and qualitative zero-shot segmentation results on nine medical image segmentation benchmarks.
Our study indicates the versatility of generalist vision foundation models on medical imaging.
arXiv Detail & Related papers (2023-04-25T08:07:59Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
We propose a multi-task deep neural network with spatial activation mechanism to segment full retinal vessel, artery and vein simultaneously.
The proposed network achieves pixel-wise accuracy of 95.70% for vessel segmentation, and A/V classification accuracy of 94.50%, which is the state-of-the-art performance for both tasks.
arXiv Detail & Related papers (2020-07-18T05:46:47Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.