Boundary-Aware Vision Transformer for Angiography Vascular Network Segmentation
- URL: http://arxiv.org/abs/2506.12980v1
- Date: Sun, 15 Jun 2025 22:35:08 GMT
- Title: Boundary-Aware Vision Transformer for Angiography Vascular Network Segmentation
- Authors: Nabil Hezil, Suraj Singh, Vita Vlasova, Oleg Rogov, Ahmed Bouridane, Rifat Hamoudi,
- Abstract summary: Boundary-Aware Vision Transformer (BAVT) is a ViT-based architecture enhanced with an edge-aware loss that explicitly guides the segmentation toward fine-grained vascular boundaries.<n>We validate our approach on the DCA-1 coronary angiography dataset, where BAVT achieves superior performance across medical image segmentation metrics.
- Score: 2.421170887647153
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate segmentation of vascular structures in coronary angiography remains a core challenge in medical image analysis due to the complexity of elongated, thin, and low-contrast vessels. Classical convolutional neural networks (CNNs) often fail to preserve topological continuity, while recent Vision Transformer (ViT)-based models, although strong in global context modeling, lack precise boundary awareness. In this work, we introduce BAVT, a Boundary-Aware Vision Transformer, a ViT-based architecture enhanced with an edge-aware loss that explicitly guides the segmentation toward fine-grained vascular boundaries. Unlike hybrid transformer-CNN models, BAVT retains a minimal, scalable structure that is fully compatible with large-scale vision foundation model (VFM) pretraining. We validate our approach on the DCA-1 coronary angiography dataset, where BAVT achieves superior performance across medical image segmentation metrics outperforming both CNN and hybrid baselines. These results demonstrate the effectiveness of combining plain ViT encoders with boundary-aware supervision for clinical-grade vascular segmentation.
Related papers
- Unleashing Vision Foundation Models for Coronary Artery Segmentation: Parallel ViT-CNN Encoding and Variational Fusion [12.839049648094893]
coronary artery segmentation is critical for computeraided diagnosis of coronary artery disease (CAD)<n>We propose a novel framework that leverages the power of vision foundation models (VFMs) through a parallel encoding architecture.<n>The proposed framework significantly outperforms state-of-the-art methods, achieving superior performance in accurate coronary artery segmentation.
arXiv Detail & Related papers (2025-07-17T09:25:00Z) - PASC-Net:Plug-and-play Shape Self-learning Convolutions Network with Hierarchical Topology Constraints for Vessel Segmentation [9.102738065373615]
We propose a novel vessel segmentation framework called PASC Net.<n>It includes two key modules: a plug-and-play shape self-learning convolutional (SSL) module that optimize convolution kernel design, and a hierarchical topological constraint (HTC) module that ensures vascular connectivity through topological constraints.<n>When integrated into the nnUNet framework, our method outperformed other methods on multiple metrics, achieving state-of-the-art vascular segmentation performance.
arXiv Detail & Related papers (2025-07-05T11:28:35Z) - CTI-Unet: Cascaded Threshold Integration for Improved U-Net Segmentation of Pathology Images [4.223102602534721]
Chronic kidney disease (CKD) is a growing global health concern, necessitating precise and efficient image analysis to aid diagnosis and treatment planning.<n>This paper proposes a novel textitd Threshold-Integrated U-Net (CTI-Unet) to overcome the limitations of single-threshold segmentation.
arXiv Detail & Related papers (2025-04-08T03:35:09Z) - BHViT: Binarized Hybrid Vision Transformer [53.38894971164072]
Model binarization has made significant progress in enabling real-time and energy-efficient computation for convolutional neural networks (CNN)<n>We propose BHViT, a binarization-friendly hybrid ViT architecture and its full binarization model with the guidance of three important observations.<n>Our proposed algorithm achieves SOTA performance among binary ViT methods.
arXiv Detail & Related papers (2025-03-04T08:35:01Z) - DGSSA: Domain generalization with structural and stylistic augmentation for retinal vessel segmentation [17.396365010722423]
Retinal vascular morphology is crucial for diagnosing diseases such as diabetes, glaucoma, and hypertension.<n>Traditional segmentation methods assume that training and testing data share similar distributions, which can lead to poor performance on unseen domains.<n>This paper presents a novel approach, DGSSA, for retinal vessel image segmentation that enhances model generalization by combining structural and style augmentation strategies.
arXiv Detail & Related papers (2025-01-07T01:47:57Z) - TBConvL-Net: A Hybrid Deep Learning Architecture for Robust Medical Image Segmentation [6.013821375459473]
We introduce a novel deep learning architecture for medical image segmentation.
Our proposed model shows consistent improvement over the state of the art on ten publicly available datasets.
arXiv Detail & Related papers (2024-09-05T09:14:03Z) - Deep Learning for Vascular Segmentation and Applications in Phase
Contrast Tomography Imaging [33.23991248643144]
We present a thorough literature review, highlighting the state of machine learning techniques across diverse organs.
Our goal is to provide a foundation on the topic and identify a robust baseline model for application to vascular segmentation in a new imaging modality.
HiP CT enables 3D imaging of complete organs at an unprecedented resolution of ca. 20mm per voxel.
arXiv Detail & Related papers (2023-11-22T11:15:38Z) - RSF-Conv: Rotation-and-Scale Equivariant Fourier Parameterized Convolution for Retinal Vessel Segmentation [58.618797429661754]
We propose a rotation-and-scale equivariant Fourier parameterized convolution (RSF-Conv) specifically for retinal vessel segmentation.
As a general module, RSF-Conv can be integrated into existing networks in a plug-and-play manner.
To demonstrate the effectiveness of RSF-Conv, we also apply RSF-Conv+U-Net and RSF-Conv+Iter-Net to retinal artery/vein classification.
arXiv Detail & Related papers (2023-09-27T13:14:57Z) - Deep Angiogram: Trivializing Retinal Vessel Segmentation [1.8479315677380455]
We propose a contrastive variational auto-encoder that can filter out irrelevant features and synthesize a latent image, named deep angiogram.
The generalizability of the synthetic network is improved by the contrastive loss that makes the model less sensitive to variations of image contrast and noisy features.
arXiv Detail & Related papers (2023-07-01T06:13:10Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Boundary Guided Semantic Learning for Real-time COVID-19 Lung Infection
Segmentation System [69.40329819373954]
The coronavirus disease 2019 (COVID-19) continues to have a negative impact on healthcare systems around the world.
At the current stage, automatically segmenting the lung infection area from CT images is essential for the diagnosis and treatment of COVID-19.
We propose a boundary guided semantic learning network (BSNet) in this paper.
arXiv Detail & Related papers (2022-09-07T05:01:38Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.