Machine Learning Based Analytics for the Significance of Gait Analysis
in Monitoring and Managing Lower Extremity Injuries
- URL: http://arxiv.org/abs/2309.15990v1
- Date: Wed, 27 Sep 2023 20:12:19 GMT
- Title: Machine Learning Based Analytics for the Significance of Gait Analysis
in Monitoring and Managing Lower Extremity Injuries
- Authors: Mostafa Rezapour, Rachel B. Seymour, Stephen H. Sims, Madhav A.
Karunakar, Nahir Habet, Metin Nafi Gurcan
- Abstract summary: The research focused on the proficiency of supervised machine learning models predicting complications.
XGBoost was the optimal model both before and after applying SMOTE.
The findings support a shift in orthopedics towards a data-informed approach, enhancing patient outcomes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study explored the potential of gait analysis as a tool for assessing
post-injury complications, e.g., infection, malunion, or hardware irritation,
in patients with lower extremity fractures. The research focused on the
proficiency of supervised machine learning models predicting complications
using consecutive gait datasets. We identified patients with lower extremity
fractures at an academic center. Patients underwent gait analysis with a
chest-mounted IMU device. Using software, raw gait data was preprocessed,
emphasizing 12 essential gait variables. Machine learning models including
XGBoost, Logistic Regression, SVM, LightGBM, and Random Forest were trained,
tested, and evaluated. Attention was given to class imbalance, addressed using
SMOTE. We introduced a methodology to compute the Rate of Change (ROC) for gait
variables, independent of the time difference between gait analyses. XGBoost
was the optimal model both before and after applying SMOTE. Prior to SMOTE, the
model achieved an average test AUC of 0.90 (95% CI: [0.79, 1.00]) and test
accuracy of 86% (95% CI: [75%, 97%]). Feature importance analysis attributed
importance to the duration between injury and gait analysis. Data patterns
showed early physiological compensations, followed by stabilization phases,
emphasizing prompt gait analysis. This study underscores the potential of
machine learning, particularly XGBoost, in gait analysis for orthopedic care.
Predicting post-injury complications, early gait assessment becomes vital,
revealing intervention points. The findings support a shift in orthopedics
towards a data-informed approach, enhancing patient outcomes.
Related papers
- Optimizing Mortality Prediction for ICU Heart Failure Patients: Leveraging XGBoost and Advanced Machine Learning with the MIMIC-III Database [1.5186937600119894]
Heart failure affects millions of people worldwide, significantly reducing quality of life and leading to high mortality rates.
Despite extensive research, the relationship between heart failure and mortality rates among ICU patients is not fully understood.
This study analyzed data from 1,177 patients over 18 years old from the MIMIC-III database, identified using ICD-9 codes.
arXiv Detail & Related papers (2024-09-03T07:57:08Z) - Advanced Meta-Ensemble Machine Learning Models for Early and Accurate Sepsis Prediction to Improve Patient Outcomes [0.0]
This paper examines the limitations of traditional sepsis screening tools like Systemic Inflammatory Response Syndrome, Modified Early Warning Score, and Quick Sequential Organ Failure Assessment.
We propose using machine learning techniques - Random Forest, Extreme Gradient Boosting, and Decision Tree models - to predict sepsis onset.
Our study evaluates these models individually and in a combined meta-ensemble approach using key metrics such as Accuracy, Precision, Recall, F1 score, and Area Under the Receiver Operating Characteristic Curve.
arXiv Detail & Related papers (2024-07-11T00:51:32Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
This paper uses the MIMIC-IV dataset to examine the fairness and bias in an XGBoost binary classification model predicting the ICU length of stay.
The research reveals class imbalances in the dataset across demographic attributes and employs data preprocessing and feature extraction.
The paper concludes with recommendations for fairness-aware machine learning techniques for mitigating biases and the need for collaborative efforts among healthcare professionals and data scientists.
arXiv Detail & Related papers (2023-12-31T16:01:48Z) - Multimodal Pretraining of Medical Time Series and Notes [45.89025874396911]
Deep learning models show promise in extracting meaningful patterns, but they require extensive labeled data.
We propose a novel approach employing self-supervised pretraining, focusing on the alignment of clinical measurements and notes.
In downstream tasks, including in-hospital mortality prediction and phenotyping, our model outperforms baselines in settings where only a fraction of the data is labeled.
arXiv Detail & Related papers (2023-12-11T21:53:40Z) - Symptom-based Machine Learning Models for the Early Detection of
COVID-19: A Narrative Review [0.0]
Machine learning models can analyze large datasets, incorporating patient-reported symptoms, clinical data, and medical imaging.
In this paper, we provide an overview of the landscape of symptoms-only machine learning models for predicting COVID-19, including their performance and limitations.
The review will also examine the performance of symptom-based models when compared to image-based models.
arXiv Detail & Related papers (2023-12-08T01:41:42Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Explainable AI and Machine Learning Towards Human Gait Deterioration
Analysis [0.0]
We objectively analyze gait data and associate findings with clinically relevant biomarkers.
We achieve classification accuracies of 98% F1 sc ores for each PhysioNet.org dataset and 95.5% F1 scores for the combined PhysioNet dataset.
arXiv Detail & Related papers (2023-06-12T14:53:00Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.