論文の概要: Cooperation Dynamics in Multi-Agent Systems: Exploring Game-Theoretic Scenarios with Mean-Field Equilibria
- arxiv url: http://arxiv.org/abs/2309.16263v3
- Date: Fri, 3 May 2024 06:36:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 18:06:46.055059
- Title: Cooperation Dynamics in Multi-Agent Systems: Exploring Game-Theoretic Scenarios with Mean-Field Equilibria
- Title(参考訳): マルチエージェントシステムにおける協調ダイナミクス:平均場平衡によるゲーム理論シナリオの探索
- Authors: Vaigarai Sathi, Sabahat Shaik, Jaswanth Nidamanuri,
- Abstract要約: 本稿では,ゲーム理論のシナリオ,すなわちIterated Prisoner's Dilemmaにおける協調を呼び起こす戦略について検討する。
既存の協調戦略は、繰り返しゲームにおけるグループ指向行動を促進する効果について分析する。
この研究は、指数関数的に増加するエージェント集団のシナリオにまで及んでいる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cooperation is fundamental in Multi-Agent Systems (MAS) and Multi-Agent Reinforcement Learning (MARL), often requiring agents to balance individual gains with collective rewards. In this regard, this paper aims to investigate strategies to invoke cooperation in game-theoretic scenarios, namely the Iterated Prisoner's Dilemma, where agents must optimize both individual and group outcomes. Existing cooperative strategies are analyzed for their effectiveness in promoting group-oriented behavior in repeated games. Modifications are proposed where encouraging group rewards will also result in a higher individual gain, addressing real-world dilemmas seen in distributed systems. The study extends to scenarios with exponentially growing agent populations ($N \longrightarrow +\infty$), where traditional computation and equilibrium determination are challenging. Leveraging mean-field game theory, equilibrium solutions and reward structures are established for infinitely large agent sets in repeated games. Finally, practical insights are offered through simulations using the Multi Agent-Posthumous Credit Assignment trainer, and the paper explores adapting simulation algorithms to create scenarios favoring cooperation for group rewards. These practical implementations bridge theoretical concepts with real-world applications.
- Abstract(参考訳): 協調はマルチエージェントシステム(MAS)とマルチエージェント強化学習(MARL)において基本的であり、エージェントは個々の利得と集団報酬のバランスを取る必要がある。
本稿では,ゲーム理論のシナリオ,すなわち,エージェントが個人とグループの両方の結果を最適化しなければならない反復的囚人のジレンマにおいて,協調を促すための戦略を検討することを目的とする。
既存の協調戦略は、繰り返しゲームにおけるグループ指向行動を促進する効果について分析する。
グループ報酬を奨励する修正は、分散システムで見られる現実のジレンマに対処し、より高い個人の利益をもたらす。
この研究は、従来の計算と平衡決定が困難である指数関数的に増加するエージェント集団(N \longrightarrow +\infty$)のシナリオにまで拡張されている。
平均場ゲーム理論を活用することで、繰り返しゲームにおいて無限大のエージェント集合に対して平衡解と報酬構造が確立される。
最後に,Multi Agent-Posthumous Credit Assignment Trainerを用いてシミュレーションを行い,シミュレーションアルゴリズムを適用し,グループ報酬に協力するシナリオを作成する。
これらの実践的な実装は、理論概念を現実世界の応用で橋渡しする。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Enhancing Heterogeneous Multi-Agent Cooperation in Decentralized MARL via GNN-driven Intrinsic Rewards [1.179778723980276]
MARL(Multi-agent Reinforcement Learning)は、シーケンシャルな意思決定と制御タスクの鍵となるフレームワークである。
これらのシステムを現実のシナリオに展開するには、分散トレーニング、多様なエージェントセット、そして頻繁な環境報酬信号から学ぶ必要がある。
我々は,新しいグラフニューラルネットワーク(GNN)に基づく本質的なモチベーションを利用して,異種エージェントポリシーの学習を容易にするCoHetアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-12T21:38:40Z) - Toward Optimal LLM Alignments Using Two-Player Games [86.39338084862324]
本稿では,対戦相手と防御エージェントの反復的相互作用を含む2エージェントゲームのレンズによるアライメントについて検討する。
この反復的強化学習最適化がエージェントによって誘導されるゲームに対するナッシュ平衡に収束することを理論的に実証する。
安全シナリオにおける実験結果から、このような競争環境下での学習は、完全に訓練するエージェントだけでなく、敵エージェントと防御エージェントの両方に対する一般化能力の向上したポリシーにつながることが示されている。
論文 参考訳(メタデータ) (2024-06-16T15:24:50Z) - Aligning Individual and Collective Objectives in Multi-Agent Cooperation [18.082268221987956]
混合モチベーション協調は、マルチエージェント学習における最も顕著な課題の1つである。
textbftextitAltruistic textbftextitGradient textbftextitAdjustment (textbftextitAgA) という新しい最適化手法を導入する。
我々は,ベンチマーク環境によるAgAアルゴリズムの有効性を評価し,小規模エージェントとの混合モチベーションを検証した。
論文 参考訳(メタデータ) (2024-02-19T08:18:53Z) - Quantifying Agent Interaction in Multi-agent Reinforcement Learning for
Cost-efficient Generalization [63.554226552130054]
マルチエージェント強化学習(MARL)における一般化の課題
エージェントが未確認のコプレイヤーに影響される程度は、エージェントのポリシーと特定のシナリオに依存する。
与えられたシナリオと環境におけるエージェント間の相互作用強度を定量化する指標であるLoI(Level of Influence)を提示する。
論文 参考訳(メタデータ) (2023-10-11T06:09:26Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
本稿では,その構成をより高機能なシステムとして協調的に調整できるマルチエージェントフレームワークを提案する。
実験により,フレームワークが単一エージェントより優れたマルチエージェントグループを効果的に展開できることが実証された。
これらの振舞いの観点から、我々は、ポジティブなものを活用し、ネガティブなものを緩和し、マルチエージェントグループの協調可能性を改善するためのいくつかの戦略について議論する。
論文 参考訳(メタデータ) (2023-08-21T16:47:11Z) - A Hierarchical Game-Theoretic Decision-Making for Cooperative
Multi-Agent Systems Under the Presence of Adversarial Agents [1.52292571922932]
危険シナリオにおけるマルチエージェントシステム(MAS)間の関係をゲーム理論モデルとして表現することができる。
本稿では,GUT(Game-theoretic Utility Tree)と呼ばれる階層型ネットワークモデルを提案する。
協力的なMAS決定のために、ハイレベル戦略を実行可能な低レベルアクションに分解する。
論文 参考訳(メタデータ) (2023-03-28T15:16:23Z) - DM$^2$: Distributed Multi-Agent Reinforcement Learning for Distribution
Matching [43.58408474941208]
本稿では,明示的なコーディネーション方式を使わずに,分散マルチエージェント学習の課題を考察する。
各エージェントは、共同専門家ポリシーから同時にサンプリングされた軌道の目標分布と一致する。
StarCraftドメインでの実験的検証は、分散の報酬と環境の報酬を組み合わせることで、エージェントが完全に分散されたベースラインより優れたパフォーマンスを発揮することを示している。
論文 参考訳(メタデータ) (2022-06-01T04:57:50Z) - Finding General Equilibria in Many-Agent Economic Simulations Using Deep
Reinforcement Learning [72.23843557783533]
本研究では,エージェント種別のメタゲームに対して,エプシロン・ナッシュ平衡である安定解を求めることができることを示す。
私たちのアプローチはより柔軟で、例えば市場クリア化のような非現実的な仮定は必要ありません。
当社のアプローチは、実際のビジネスサイクルモデル、DGEモデルの代表的なファミリー、100人の労働者消費者、10社の企業、税金と再分配を行う政府で実証しています。
論文 参考訳(メタデータ) (2022-01-03T17:00:17Z) - Cooperative and Competitive Biases for Multi-Agent Reinforcement
Learning [12.676356746752893]
マルチエージェント強化学習(MARL)アルゴリズムのトレーニングは,単一エージェント強化学習アルゴリズムのトレーニングよりも難しい。
本稿では,他のエージェントの偏りのある行動情報を用いたMARL訓練を促進するアルゴリズムを提案する。
本アルゴリズムは, 多様な協調競合環境において, 既存のアルゴリズムを上回っていることを実証した。
論文 参考訳(メタデータ) (2021-01-18T05:52:22Z) - Distributed Reinforcement Learning for Cooperative Multi-Robot Object
Manipulation [53.262360083572005]
強化学習(RL)を用いた協調型マルチロボットオブジェクト操作タスクの検討
分散近似RL(DA-RL)とゲーム理論RL(GT-RL)の2つの分散マルチエージェントRLアプローチを提案する。
本稿では, DA-RL と GT-RL を多エージェントシステムに適用し, 大規模システムへの拡張が期待される。
論文 参考訳(メタデータ) (2020-03-21T00:43:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。