論文の概要: A Hierarchical Game-Theoretic Decision-Making for Cooperative
Multi-Agent Systems Under the Presence of Adversarial Agents
- arxiv url: http://arxiv.org/abs/2303.16641v1
- Date: Tue, 28 Mar 2023 15:16:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-30 14:50:11.359557
- Title: A Hierarchical Game-Theoretic Decision-Making for Cooperative
Multi-Agent Systems Under the Presence of Adversarial Agents
- Title(参考訳): エージェント存在下での協調型多エージェントシステムの階層型ゲーム理論決定法
- Authors: Qin Yang and Ramviyas Parasuraman
- Abstract要約: 危険シナリオにおけるマルチエージェントシステム(MAS)間の関係をゲーム理論モデルとして表現することができる。
本稿では,GUT(Game-theoretic Utility Tree)と呼ばれる階層型ネットワークモデルを提案する。
協力的なMAS決定のために、ハイレベル戦略を実行可能な低レベルアクションに分解する。
- 参考スコア(独自算出の注目度): 1.52292571922932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Underlying relationships among Multi-Agent Systems (MAS) in hazardous
scenarios can be represented as Game-theoretic models. This paper proposes a
new hierarchical network-based model called Game-theoretic Utility Tree (GUT),
which decomposes high-level strategies into executable low-level actions for
cooperative MAS decisions. It combines with a new payoff measure based on agent
needs for real-time strategy games. We present an Explore game domain, where we
measure the performance of MAS achieving tasks from the perspective of
balancing the success probability and system costs. We evaluate the GUT
approach against state-of-the-art methods that greedily rely on rewards of the
composite actions. Conclusive results on extensive numerical simulations
indicate that GUT can organize more complex relationships among MAS
cooperation, helping the group achieve challenging tasks with lower costs and
higher winning rates. Furthermore, we demonstrated the applicability of the GUT
using the simulator-hardware testbed - Robotarium. The performances verified
the effectiveness of the GUT in the real robot application and validated that
the GUT could effectively organize MAS cooperation strategies, helping the
group with fewer advantages achieve higher performance.
- Abstract(参考訳): 危険シナリオにおけるマルチエージェントシステム(MAS)間の関係をゲーム理論モデルとして表現することができる。
本稿では,協調的mas決定のための高レベル戦略を実行可能な低レベルアクションに分解する,ゲーム理論ユーティリティツリー(gut)と呼ばれる新しい階層的ネットワークベースモデルを提案する。
これは、リアルタイム戦略ゲームのためのエージェントのニーズに基づく新しいペイオフ指標と組み合わせられる。
そこで本研究では,成功確率とシステムコストのバランスの観点からmas達成タスクの性能を計測する探索ゲーム領域を提案する。
我々は,複合行動の報酬に優しく依存する最先端手法に対するGUTアプローチを評価する。
広範な数値シミュレーションの結果は、GUTがより複雑なMAS協力関係を整理し、より低コストで高い勝利率で挑戦的なタスクを達成できることを示している。
さらに,シミュレータハードウェアテストベッドであるRobotariumを用いて,GUTの適用性を示した。
実際のロボットアプリケーションにおけるGUTの有効性を検証し、GUTがMAS協力戦略を効果的に組織化できることを検証した。
関連論文リスト
- Human-Agent Coordination in Games under Incomplete Information via Multi-Step Intent [21.170542003568674]
自律エージェントと人間のパートナー間の戦略的調整はターンベースの協調ゲームとしてモデル化できる。
不完全な情報の下でターンベースのゲームを拡張し、プレイヤーが単一のアクションではなく、ターンごとに複数のアクションを実行できるようにする。
論文 参考訳(メタデータ) (2024-10-23T19:37:19Z) - Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning [51.52387511006586]
本稿では,HOP(Hierarchical Opponent Modeling and Planning)を提案する。
HOPは階層的に2つのモジュールから構成される: 相手の目標を推論し、対応する目標条件のポリシーを学ぶ、反対モデリングモジュール。
HOPは、さまざまな未確認エージェントと相互作用する際、優れた少数ショット適応能力を示し、セルフプレイのシナリオで優れている。
論文 参考訳(メタデータ) (2024-06-12T08:48:06Z) - Reaching Consensus in Cooperative Multi-Agent Reinforcement Learning
with Goal Imagination [16.74629849552254]
本稿では,複数のエージェントを協調するモデルに基づくコンセンサス機構を提案する。
提案したMulti-Adnt Goal Imagination (MAGI) フレームワークは、エージェントがImagined Common goalとコンセンサスに達するためのガイドである。
このような効率的なコンセンサス機構は、すべてのエージェントを協調して有用な将来状態に導くことができることを示す。
論文 参考訳(メタデータ) (2024-03-05T18:07:34Z) - Aligning Individual and Collective Objectives in Multi-Agent Cooperation [18.082268221987956]
混合モチベーション協調は、マルチエージェント学習における最も顕著な課題の1つである。
textbftextitAltruistic textbftextitGradient textbftextitAdjustment (textbftextitAgA) という新しい最適化手法を導入する。
我々は,ベンチマーク環境によるAgAアルゴリズムの有効性を評価し,小規模エージェントとの混合モチベーションを検証した。
論文 参考訳(メタデータ) (2024-02-19T08:18:53Z) - Cooperation Dynamics in Multi-Agent Systems: Exploring Game-Theoretic Scenarios with Mean-Field Equilibria [0.0]
本稿では,ゲーム理論のシナリオ,すなわちIterated Prisoner's Dilemmaにおける協調を呼び起こす戦略について検討する。
既存の協調戦略は、繰り返しゲームにおけるグループ指向行動を促進する効果について分析する。
この研究は、指数関数的に増加するエージェント集団のシナリオにまで及んでいる。
論文 参考訳(メタデータ) (2023-09-28T08:57:01Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
本稿では,その構成をより高機能なシステムとして協調的に調整できるマルチエージェントフレームワークを提案する。
実験により,フレームワークが単一エージェントより優れたマルチエージェントグループを効果的に展開できることが実証された。
これらの振舞いの観点から、我々は、ポジティブなものを活用し、ネガティブなものを緩和し、マルチエージェントグループの協調可能性を改善するためのいくつかの戦略について議論する。
論文 参考訳(メタデータ) (2023-08-21T16:47:11Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
本稿では,MARL(Multi-Agent Reinforcement Learning)に対する新しいアプローチを提案する。
これは、協調的なタスク分解と、サブタスクの構造をコードする報酬機(RM)の学習を組み合わせる。
提案手法は、部分的に観測可能な環境下での報酬の非マルコフ的性質に対処するのに役立つ。
論文 参考訳(メタデータ) (2023-03-24T15:12:28Z) - HAVEN: Hierarchical Cooperative Multi-Agent Reinforcement Learning with
Dual Coordination Mechanism [17.993973801986677]
多エージェント強化学習はしばしば、多数のエージェントによって引き起こされる指数関数的に大きな作用空間に悩まされる。
完全協調型マルチエージェント問題に対する階層的強化学習に基づく新しい値分解フレームワークHAVENを提案する。
論文 参考訳(メタデータ) (2021-10-14T10:43:47Z) - Softmax with Regularization: Better Value Estimation in Multi-Agent
Reinforcement Learning [72.28520951105207]
q$-learningの過大評価は、シングルエージェント強化学習で広く研究されている重要な問題である。
ベースラインから逸脱する大きな関節動作値をペナライズする,新たな正規化ベースの更新方式を提案する。
本手法は,StarCraft IIマイクロマネジメントの課題に対して,一貫した性能向上を実現する。
論文 参考訳(メタデータ) (2021-03-22T14:18:39Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
本稿では,複雑な視覚環境において,エージェントが低品質な実演を行えるようにするためのアプローチの組み合わせを提案する。
提案した目標指向のリプレイバッファ構築により,エージェントはデモにおいて複雑な階層的タスクを解くためのサブゴールを自動的に強調することができる。
私たちのアルゴリズムに基づくこのソリューションは、有名なMineRLコンペティションのすべてのソリューションを破り、エージェントがMinecraft環境でダイヤモンドをマイニングすることを可能にする。
論文 参考訳(メタデータ) (2020-06-17T15:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。