AgEncID: Aggregate Encryption Individual Decryption of Key for FPGA Bitstream IP Cores in Cloud
- URL: http://arxiv.org/abs/2309.16282v2
- Date: Wed, 4 Oct 2023 12:01:32 GMT
- Title: AgEncID: Aggregate Encryption Individual Decryption of Key for FPGA Bitstream IP Cores in Cloud
- Authors: Mukta Debnath, Krishnendu Guha, Debasri Saha, Susmita Sur-Kolay,
- Abstract summary: Security of FPGA-based bitstream for Intellectual Property, IP cores from unauthorized interception in cloud environments remains a prominent concern.
This paper proposes Aggregate Encryption and Individual Decryption, a cryptosystem based on key aggregation to enhance the security of FPGA-based bitstream for IP cores.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cloud computing platforms are progressively adopting Field Programmable Gate Arrays to deploy specialized hardware accelerators for specific computational tasks. However, the security of FPGA-based bitstream for Intellectual Property, IP cores from unauthorized interception in cloud environments remains a prominent concern. Existing methodologies for protection of such bitstreams possess several limitations, such as requiring a large number of keys, tying bitstreams to specific FPGAs, and relying on trusted third parties. This paper proposes Aggregate Encryption and Individual Decryption, a cryptosystem based on key aggregation to enhance the security of FPGA-based bitstream for IP cores and to address the pitfalls of previous related works. In our proposed scheme, IP providers can encrypt their bitstreams with a single key for a set S of FPGA boards, with which the bitstreams can directly be decrypted on any of the FPGA boards in S. Aggregate encryption of the key is performed in a way which ensures that the key can solely be obtained onboard through individual decryption employing the board's private key, thus facilitating secure key provisioning. The proposed cryptosystem is evaluated mainly on Zynq FPGAs. The outcomes demonstrate that our cryptosystem not only outperforms existing techniques with respect to resource, time and energy significantly but also upholds robust security assurances.
Related papers
- WiP: Towards a Secure SECP256K1 for Crypto Wallets: Hardware Architecture and Implementation [0.9899633398596672]
This work proposes a novel hardware architecture for SECP256K1, optimized for side-channel attack resistance and efficient resource utilization.
Implementation results demonstrate an average reduction of 45% in LUT usage compared to similar works, emphasizing the design's resource efficiency.
arXiv Detail & Related papers (2024-11-06T13:41:04Z) - Multi-Layered Security System: Integrating Quantum Key Distribution with Classical Cryptography to Enhance Steganographic Security [0.0]
We present a novel cryptographic system that integrates Quantum Key Distribution (QKD) with classical encryption techniques.
Our approach leverages the E91 QKD protocol to generate a shared secret key between communicating parties.
This key is then hashed using the Secure Hash Algorithm (SHA) to provide a fixedlength, high-entropy key.
arXiv Detail & Related papers (2024-08-13T15:20:29Z) - Simulations of distributed-phase-reference quantum key distribution protocols [0.1398098625978622]
Quantum key distribution protocols provide a secret key between two users with security guaranteed by the laws of quantum mechanics.
We perform simulations on the Interconnect platform to characterise the practical implementation of these devices.
We briefly describe and simulate some possible eavesdropping attempts, backflash attack, trojan-horse attack and detector-blinding attack exploiting the device imperfections.
arXiv Detail & Related papers (2024-06-13T13:19:04Z) - Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework [47.11111145443189]
We introduce Enc2DB, a novel secure database system following a hybrid strategy on and openGauss.
We present a micro-benchmarking test and self-adaptive mode switch strategy that can choose the best execution path (cryptography or TEE) to answer a given query.
We also design and implement a ciphertext index compatible with native cost model and querys to accelerate query processing.
arXiv Detail & Related papers (2024-04-10T08:11:12Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
We propose SOCI+ which significantly improves the performance of SOCI.
SOCI+ employs a novel (2, 2)-threshold Paillier cryptosystem with fast encryption and decryption as its cryptographic primitive.
Compared with SOCI, our experimental evaluation shows that SOCI+ is up to 5.4 times more efficient in computation and 40% less in communication overhead.
arXiv Detail & Related papers (2023-09-27T05:19:32Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Establishing shared secret keys on quantum line networks: protocol and
security [0.0]
We show the security of multi-user key establishment on a single line of quantum communication.
We consider a quantum communication architecture where qubit generation and measurement happen at the two ends of the line.
arXiv Detail & Related papers (2023-04-04T15:35:23Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Near Threshold Computation of Partitioned Ring Learning With Error (RLWE) Post Quantum Cryptography on Reconfigurable Architecture [0.8793721044482612]
Ring Learning With Error (RLWE) algorithm is used in Post Quantum Cryptography (PQC) and Homomorphic Encryption (HE) algorithm.
In this paper, we have implemented RLWE hardware accelerator which has 14 subcomponents.
This voltage scaled, partitioned RLWE can save 6% and 11% power in Vivado and VTR platform respectively.
arXiv Detail & Related papers (2022-08-17T06:08:54Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.