論文の概要: EFFL: Egalitarian Fairness in Federated Learning for Mitigating Matthew
Effect
- arxiv url: http://arxiv.org/abs/2309.16338v1
- Date: Thu, 28 Sep 2023 10:51:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-29 14:59:01.734542
- Title: EFFL: Egalitarian Fairness in Federated Learning for Mitigating Matthew
Effect
- Title(参考訳): EFFL: マシュー効果の緩和のためのフェデレートラーニングにおける平等
- Authors: Jiashi Gao, Changwu Huang, Ming Tang, Shin Hwei Tan, Xin Yao, Xuetao
Wei
- Abstract要約: マシュー効果を緩和するために,平等フェアネスフェデレートラーニング(EFFL)を提案する。
EFFLはパフォーマンスの最適性を目指しており、各クライアントに対する経験的リスク損失とバイアスを最小限にしている。
EFFLは、高性能なグローバルモデルを実現する上で、他の最先端のFLアルゴリズムよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 11.24699174877316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in federated learning (FL) enable collaborative training of
machine learning (ML) models from large-scale and widely dispersed clients
while protecting their privacy. However, when different clients' datasets are
heterogeneous, traditional FL mechanisms produce a global model that does not
adequately represent the poorer clients with limited data resources, resulting
in lower accuracy and higher bias on their local data. According to the Matthew
effect, which describes how the advantaged gain more advantage and the
disadvantaged lose more over time, deploying such a global model in client
applications may worsen the resource disparity among the clients and harm the
principles of social welfare and fairness. To mitigate the Matthew effect, we
propose Egalitarian Fairness Federated Learning (EFFL), where egalitarian
fairness refers to the global model learned from FL has: (1) equal accuracy
among clients; (2) equal decision bias among clients. Besides achieving
egalitarian fairness among the clients, EFFL also aims for performance
optimality, minimizing the empirical risk loss and the bias for each client;
both are essential for any ML model training, whether centralized or
decentralized. We formulate EFFL as a constrained multi-constrained
multi-objectives optimization (MCMOO) problem, with the decision bias and
egalitarian fairness as constraints and the minimization of the empirical risk
losses on all clients as multiple objectives to be optimized. We propose a
gradient-based three-stage algorithm to obtain the Pareto optimal solutions
within the constraint space. Extensive experiments demonstrate that EFFL
outperforms other state-of-the-art FL algorithms in achieving a
high-performance global model with enhanced egalitarian fairness among all
clients.
- Abstract(参考訳): フェデレーション学習(fl)の最近の進歩は、プライバシを保護しながら、大規模かつ広く分散したクライアントからの機械学習(ml)モデルの協調トレーニングを可能にする。
しかしながら、異なるクライアントのデータセットが異種である場合、従来のflメカニズムは、より貧弱なクライアントを限られたデータリソースで適切に表現しないグローバルモデルを生成し、その結果、そのローカルデータに対する精度とバイアスが低下する。
アドバンテージがいかに優位になり、時間とともに不利になるかを説明するmatthew effectによると、このようなグローバルモデルをクライアントアプリケーションにデプロイすることで、クライアント間のリソース格差が悪化し、社会福祉と公正の原則が損なわれる可能性がある。
そこで本研究では,egalitarian fairness(egalitarian fairness federated learning(effl)を提案する。
EFFLは、クライアント間の平等性を達成することに加えて、各クライアントに対する経験的リスク損失とバイアスを最小限に抑える、パフォーマンスの最適性も目標としている。
我々は、EFFLを制約付き多目的最適化(MCMOO)問題として定式化し、決定バイアスと平等公正性を制約とし、最適化すべき複数の目的として全てのクライアントに対する経験的リスク損失を最小化する。
制約空間内でのパレート最適解を得るための勾配に基づく3段階アルゴリズムを提案する。
大規模な実験により、EFFLは他の最先端のFLアルゴリズムよりも優れた性能を示し、全てのクライアントの間で平等性を高めた高性能グローバルモデルを実現する。
関連論文リスト
- FedMABA: Towards Fair Federated Learning through Multi-Armed Bandits Allocation [26.52731463877256]
本稿では,対戦型マルチアームバンディットの概念を導入し,性能格差を明示した制約で提案対象を最適化する。
そこで本研究では,データ分散の異なる多種多様なクライアント間での性能不公平さを軽減するために,新しいマルチアーム帯域割り当てFLアルゴリズム(FedMABA)を提案する。
論文 参考訳(メタデータ) (2024-10-26T10:41:45Z) - On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness [16.595935469099306]
本稿では,乗算器の交互方向法(ADMM)を利用して,パーソナライズおよびグローバルモデルの学習を行う最適化フレームワークFLAMEを提案する。
我々の理論的解析は、軽度の仮定の下で、FLAMEのグローバル収束と2種類の収束速度を確立する。
実験の結果,FLAMEは収束と精度において最先端の手法より優れており,各種攻撃下では高い精度を達成できることがわかった。
論文 参考訳(メタデータ) (2024-07-23T11:35:42Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
フェデレートラーニング(FL)は、分散データに基づく機械学習モデルの協調トレーニングを可能にする。
クライアント間でのデータはしばしば、クラス不均衡、特徴分散スキュー、サンプルサイズ不均衡、その他の現象によって大きく異なる。
本稿では,バイレベル最適化を用いた新しいベイズPFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T11:28:06Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - Fair and Consistent Federated Learning [48.19977689926562]
フェデレートラーニング(FL)は、分散データソースから学習する能力に対する関心が高まっている。
本稿では,異なるローカルクライアント間で性能整合性とアルゴリズムフェアネスを協調的に検討するFLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-19T01:56:08Z) - Auto-weighted Robust Federated Learning with Corrupted Data Sources [7.475348174281237]
フェデレーション学習はコミュニケーション効率とプライバシ保護のトレーニングプロセスを提供する。
平均損失関数をナイーブに最小化する標準的なフェデレーション学習技術は、データの破損に弱い。
破損したデータソースに対して堅牢性を提供するために、自動重み付けロバストフェデレーテッドラーニング(arfl)を提案します。
論文 参考訳(メタデータ) (2021-01-14T21:54:55Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。