Integrating quantum and classical computing for multi-energy system optimization using Benders decomposition
- URL: http://arxiv.org/abs/2309.16363v2
- Date: Tue, 2 Jul 2024 07:12:15 GMT
- Title: Integrating quantum and classical computing for multi-energy system optimization using Benders decomposition
- Authors: Ludger Leenders, Martin Sollich, Christiane Reinert, André Bardow,
- Abstract summary: We present a hybrid Benders decomposition approach combining optimization on quantum and classical computers.
We test the approach on a case study to design a cost-optimal multi-energy system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: During recent years, quantum computers have received increasing attention, primarily due to their ability to significantly increase computational performance for specific problems. Computational performance could be improved for mathematical optimization by quantum annealers. This special type of quantum computer can solve quadratic unconstrained binary optimization problems. However, multi-energy systems optimization commonly involves integer and continuous decision variables. Due to their mixed-integer problem structure, quantum annealers cannot be directly used for multi-energy system optimization. To solve multi-energy system optimization problems, we present a hybrid Benders decomposition approach combining optimization on quantum and classical computers. In our approach, the quantum computer solves the master problem, which involves only the integer variables from the original energy system optimization problem. The subproblem includes the continuous variables and is solved by a classical computer. For better performance, we apply improvement techniques to the Benders decomposition. We test the approach on a case study to design a cost-optimal multi-energy system. While we provide a proof of concept that our Benders decomposition approach is applicable for the design of multi-energy systems, the computational time is still higher than for approaches using classical computers only. We therefore estimate the potential improvement of our approach to be expected for larger and fault-tolerant quantum computers.
Related papers
- Performant near-term quantum combinatorial optimization [1.1999555634662633]
We present a variational quantum algorithm for solving optimization problems with linear-depth circuits.
Our algorithm uses an ansatz composed of Hamiltonian generators designed to control each term in the target quantum function.
We conclude our performant and resource-minimal approach is a promising candidate for potential quantum computational advantages.
arXiv Detail & Related papers (2024-04-24T18:49:07Z) - Challenges and Opportunities in Quantum Optimization [14.7608536260003]
Recent advances in quantum computers are demonstrating the ability to solve problems at a scale beyond brute force classical simulation.
Across computer science and physics, there are different approaches for major optimization problems.
arXiv Detail & Related papers (2023-12-04T19:00:44Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
We compare the performance of classicals across a series of partially-randomized tasks.
We focus on local zeroth-orders due to their generally favorable performance and query-efficiency on quantum systems.
arXiv Detail & Related papers (2023-10-14T02:13:26Z) - Efficient Use of Quantum Linear System Algorithms in Interior Point
Methods for Linear Optimization [0.0]
We develop an Inexact Infeasible Quantum Interior Point Method to solve linear optimization problems.
We also discuss how can we get an exact solution by Iterative Refinement without excessive time of quantum solvers.
arXiv Detail & Related papers (2022-05-02T21:30:56Z) - Classically-Boosted Quantum Optimization Algorithm [0.0]
We explore a natural approach to leveraging existing classical techniques to enhance quantum optimization.
Specifically, we run a classical algorithm to find an approximate solution and then use a quantum circuit to search its "neighborhood" for higher-quality solutions.
We demonstrate the applications of CBQOA to Max 3SAT and Max Bisection, and provide empirical evidence that it outperforms previous approaches on these problems.
arXiv Detail & Related papers (2022-03-25T23:36:14Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Solving Quadratic Unconstrained Binary Optimization with
divide-and-conquer and quantum algorithms [0.0]
We apply the divide-and-conquer approach to reduce the original problem to a collection of smaller problems.
This technique can be applied to any QUBO instance and leads to either an all-classical or a hybrid quantum-classical approach.
arXiv Detail & Related papers (2021-01-19T19:00:40Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.