論文の概要: Text-to-3D using Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2309.16585v2
- Date: Fri, 29 Sep 2023 14:42:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-02 10:19:11.252228
- Title: Text-to-3D using Gaussian Splatting
- Title(参考訳): ガウススプレイティングを用いたテキストから3D
- Authors: Zilong Chen, Feng Wang, Huaping Liu
- Abstract要約: 高品質な3Dオブジェクトを生成するための新しいアプローチを提案する。
我々は最近の最先端の表現である3D Gaussian Splattingを活用している。
本手法は細かな細部とより正確な形状で3Dコンテンツを生成できる。
- 参考スコア(独自算出の注目度): 18.65458191015596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present Gaussian Splatting based text-to-3D generation
(GSGEN), a novel approach for generating high-quality 3D objects. Previous
methods suffer from inaccurate geometry and limited fidelity due to the absence
of 3D prior and proper representation. We leverage 3D Gaussian Splatting, a
recent state-of-the-art representation, to address existing shortcomings by
exploiting the explicit nature that enables the incorporation of 3D prior.
Specifically, our method adopts a progressive optimization strategy, which
includes a geometry optimization stage and an appearance refinement stage. In
geometry optimization, a coarse representation is established under a 3D
geometry prior along with the ordinary 2D SDS loss, ensuring a sensible and
3D-consistent rough shape. Subsequently, the obtained Gaussians undergo an
iterative refinement to enrich details. In this stage, we increase the number
of Gaussians by compactness-based densification to enhance continuity and
improve fidelity. With these designs, our approach can generate 3D content with
delicate details and more accurate geometry. Extensive evaluations demonstrate
the effectiveness of our method, especially for capturing high-frequency
components. Video results are provided at https://gsgen3d.github.io. Our code
is available at https://github.com/gsgen3d/gsgen
- Abstract(参考訳): 本稿では,高品質3dオブジェクト生成のための新しい手法であるgsgen(gaussian splatting based text-to-3d generation)を提案する。
以前の手法では、3dの事前表現と適切な表現がないため、不正確な幾何学と限定的な忠実さに苦しむ。
我々は,最新の最先端表現である3d gaussian splatting を利用して,3d pre の組み入れを可能にする明示的な性質を活用し,既存の欠点を解決する。
具体的には,幾何学最適化段階と外観改善段階を含むプログレッシブ最適化戦略を採用する。
幾何最適化において、通常の2次元SDS損失とともに3次元幾何の下で粗い表現が確立され、3次元一貫性のある粗い形状が確保される。
その後、得られたガウス人は詳細を豊かにするために反復的な改良を行う。
この段階では、コンパクト性に基づくデンシフィケーションによってガウス数を増やし、連続性を高め、忠実性を向上させる。
これらの設計により、より繊細なディテールとより正確な幾何で3Dコンテンツを生成することができる。
広汎な評価は,特に高周波成分の捕捉に有効であることを示す。
ビデオはhttps://gsgen3d.github.ioで提供される。
私たちのコードはhttps://github.com/gsgen3d/gsgenで利用可能です。
関連論文リスト
- Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
単一の画像から3Dオブジェクトを生成するには、野生で撮影された未ポーズのRGB画像から、目に見えない景色の完全な3D形状とテクスチャを推定する必要がある。
3次元オブジェクト生成の最近の進歩は、物体の形状とテクスチャを再構築する技術を導入している。
本稿では, この限界に対応するために, 2次元拡散モデルと3次元拡散モデルとのギャップを埋めることを提案する。
論文 参考訳(メタデータ) (2024-10-12T10:14:11Z) - ScalingGaussian: Enhancing 3D Content Creation with Generative Gaussian Splatting [30.99112626706754]
高品質な3Dアセットの作成は、デジタル遺産、エンターテイメント、ロボット工学の応用において最重要である。
伝統的に、このプロセスはモデリングに熟練した専門家と専門的なソフトウェアを必要とする。
本稿では,3Dテクスチャを効率的に生成する新しい3Dコンテンツ作成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-26T18:26:01Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
単一視点からの3次元オブジェクト再構成のためのガウススプティング表現に基づく拡散モデル手法を提案する。
モデルはGS楕円体の集合で表される3Dオブジェクトを生成することを学習する。
最終的な再構成されたオブジェクトは、高品質な3D構造とテクスチャを持ち、任意のビューで効率的にレンダリングできる。
論文 参考訳(メタデータ) (2024-07-05T03:43:08Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
テキストプロンプトから高品質な3Dアセットを作成するための拡散型3D生成モデルであるDIRECT-3Dを提案する。
我々のモデルは、広範に騒々しく不整合な3D資産で直接訓練されている。
単一クラス生成とテキスト・ツー・3D生成の両方で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-06-06T17:58:15Z) - GVGEN: Text-to-3D Generation with Volumetric Representation [89.55687129165256]
3Dガウススプラッティングは、高速で高品質なレンダリング機能で知られる3D再構成と生成のための強力な技術として登場した。
本稿では,テキスト入力から3次元ガウス表現を効率的に生成する新しい拡散型フレームワークGVGENを提案する。
論文 参考訳(メタデータ) (2024-03-19T17:57:52Z) - Hyper-3DG: Text-to-3D Gaussian Generation via Hypergraph [20.488040789522604]
本稿では,ハイパーグラフ(Hyper-3DG)を用いた3次元ガウス生成法を提案する。
本フレームワークは, 凝集度を最適化し, 劣化を効果的に回避し, 微細に生成した3Dオブジェクトの創出を可能にする。
論文 参考訳(メタデータ) (2024-03-14T09:59:55Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - AGG: Amortized Generative 3D Gaussians for Single Image to 3D [108.38567665695027]
Amortized Generative 3D Gaussian framework (AGG) を導入する。
AGGは、共同最適化のための3Dガウス位置およびその他の外観特性の生成を分解する。
本稿では,まず3次元データの粗い表現を生成し,後に3次元ガウス超解像モジュールでアップサンプリングするカスケードパイプラインを提案する。
論文 参考訳(メタデータ) (2024-01-08T18:56:33Z) - DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation [55.661467968178066]
本稿では,DreamGaussianを提案する。DreamGaussianは,効率と品質を両立させる新しい3Dコンテンツ生成フレームワークである。
我々の重要な洞察は、UV空間におけるメッシュ抽出とテクスチャ改善を伴う3次元ガウススプラッティングモデルを設計することである。
ニューラル・ラジアンス・フィールドにおける占有プルーニングとは対照的に、3次元ガウスの進行的な密度化は3次元生成タスクにおいて著しく速く収束することを示した。
論文 参考訳(メタデータ) (2023-09-28T17:55:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。