論文の概要: Text-to-3D using Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2309.16585v4
- Date: Tue, 2 Apr 2024 05:10:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 13:02:27.831853
- Title: Text-to-3D using Gaussian Splatting
- Title(参考訳): Gaussian Splatting を用いたテキストから3Dへの変換
- Authors: Zilong Chen, Feng Wang, Yikai Wang, Huaping Liu,
- Abstract要約: 本稿では,最新の最先端表現であるガウススプラッティングをテキストから3D生成に適用する新しい手法であるGSGENを提案する。
GSGENは、高品質な3Dオブジェクトを生成し、ガウススティングの明示的な性質を活用することで既存の欠点に対処することを目的としている。
我々の手法は繊細な細部と正確な形状で3Dアセットを生成することができる。
- 参考スコア(独自算出の注目度): 18.163413810199234
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic text-to-3D generation that combines Score Distillation Sampling (SDS) with the optimization of volume rendering has achieved remarkable progress in synthesizing realistic 3D objects. Yet most existing text-to-3D methods by SDS and volume rendering suffer from inaccurate geometry, e.g., the Janus issue, since it is hard to explicitly integrate 3D priors into implicit 3D representations. Besides, it is usually time-consuming for them to generate elaborate 3D models with rich colors. In response, this paper proposes GSGEN, a novel method that adopts Gaussian Splatting, a recent state-of-the-art representation, to text-to-3D generation. GSGEN aims at generating high-quality 3D objects and addressing existing shortcomings by exploiting the explicit nature of Gaussian Splatting that enables the incorporation of 3D prior. Specifically, our method adopts a progressive optimization strategy, which includes a geometry optimization stage and an appearance refinement stage. In geometry optimization, a coarse representation is established under 3D point cloud diffusion prior along with the ordinary 2D SDS optimization, ensuring a sensible and 3D-consistent rough shape. Subsequently, the obtained Gaussians undergo an iterative appearance refinement to enrich texture details. In this stage, we increase the number of Gaussians by compactness-based densification to enhance continuity and improve fidelity. With these designs, our approach can generate 3D assets with delicate details and accurate geometry. Extensive evaluations demonstrate the effectiveness of our method, especially for capturing high-frequency components. Our code is available at https://github.com/gsgen3d/gsgen
- Abstract(参考訳): SDS(Score Distillation Sampling)とボリュームレンダリングの最適化を組み合わせたテキストから3Dへの自動生成は、現実的な3Dオブジェクトの合成において顕著な進歩を遂げた。
しかし、SDSやボリュームレンダリングによる既存のテキストから3Dの手法の多くは、ジャヌス問題のような不正確な幾何学に悩まされている。
また、色豊かな精巧な3Dモデルを作るのには通常時間がかかります。
そこで本研究では,最新の最先端表現であるガウススプラッティングをテキストから3D生成に適用する新しい手法であるGSGENを提案する。
GSGENは、高品質な3Dオブジェクトを生成し、既存の欠点に対処することを目的としている。
具体的には、幾何最適化段階と外観改善段階を含むプログレッシブ最適化戦略を採用する。
幾何最適化では、通常の2次元SDS最適化とともに3次元点雲拡散の下で粗い表現が確立され、感度と3次元一貫性の粗い形状が確保される。
その後、得られたガウス人はテクスチャの詳細を豊かにするために反復的な外観の洗練を施した。
この段階では、コンパクト性に基づく密度化によりガウスの数が増加し、連続性を高め、忠実性を向上させる。
これらの設計により、我々は繊細な細部と正確な形状で3Dアセットを作成できる。
広汎な評価は,特に高周波成分の捕捉に有効であることを示す。
私たちのコードはhttps://github.com/gsgen3d/gsgenで利用可能です。
関連論文リスト
- Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
単一の画像から3Dオブジェクトを生成するには、野生で撮影された未ポーズのRGB画像から、目に見えない景色の完全な3D形状とテクスチャを推定する必要がある。
3次元オブジェクト生成の最近の進歩は、物体の形状とテクスチャを再構築する技術を導入している。
本稿では, この限界に対応するために, 2次元拡散モデルと3次元拡散モデルとのギャップを埋めることを提案する。
論文 参考訳(メタデータ) (2024-10-12T10:14:11Z) - ScalingGaussian: Enhancing 3D Content Creation with Generative Gaussian Splatting [30.99112626706754]
高品質な3Dアセットの作成は、デジタル遺産、エンターテイメント、ロボット工学の応用において最重要である。
伝統的に、このプロセスはモデリングに熟練した専門家と専門的なソフトウェアを必要とする。
本稿では,3Dテクスチャを効率的に生成する新しい3Dコンテンツ作成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-26T18:26:01Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
単一視点からの3次元オブジェクト再構成のためのガウススプティング表現に基づく拡散モデル手法を提案する。
モデルはGS楕円体の集合で表される3Dオブジェクトを生成することを学習する。
最終的な再構成されたオブジェクトは、高品質な3D構造とテクスチャを持ち、任意のビューで効率的にレンダリングできる。
論文 参考訳(メタデータ) (2024-07-05T03:43:08Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
テキストプロンプトから高品質な3Dアセットを作成するための拡散型3D生成モデルであるDIRECT-3Dを提案する。
我々のモデルは、広範に騒々しく不整合な3D資産で直接訓練されている。
単一クラス生成とテキスト・ツー・3D生成の両方で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-06-06T17:58:15Z) - GVGEN: Text-to-3D Generation with Volumetric Representation [89.55687129165256]
3Dガウススプラッティングは、高速で高品質なレンダリング機能で知られる3D再構成と生成のための強力な技術として登場した。
本稿では,テキスト入力から3次元ガウス表現を効率的に生成する新しい拡散型フレームワークGVGENを提案する。
論文 参考訳(メタデータ) (2024-03-19T17:57:52Z) - Hyper-3DG: Text-to-3D Gaussian Generation via Hypergraph [20.488040789522604]
本稿では,ハイパーグラフ(Hyper-3DG)を用いた3次元ガウス生成法を提案する。
本フレームワークは, 凝集度を最適化し, 劣化を効果的に回避し, 微細に生成した3Dオブジェクトの創出を可能にする。
論文 参考訳(メタデータ) (2024-03-14T09:59:55Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - AGG: Amortized Generative 3D Gaussians for Single Image to 3D [108.38567665695027]
Amortized Generative 3D Gaussian framework (AGG) を導入する。
AGGは、共同最適化のための3Dガウス位置およびその他の外観特性の生成を分解する。
本稿では,まず3次元データの粗い表現を生成し,後に3次元ガウス超解像モジュールでアップサンプリングするカスケードパイプラインを提案する。
論文 参考訳(メタデータ) (2024-01-08T18:56:33Z) - DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation [55.661467968178066]
本稿では,DreamGaussianを提案する。DreamGaussianは,効率と品質を両立させる新しい3Dコンテンツ生成フレームワークである。
我々の重要な洞察は、UV空間におけるメッシュ抽出とテクスチャ改善を伴う3次元ガウススプラッティングモデルを設計することである。
ニューラル・ラジアンス・フィールドにおける占有プルーニングとは対照的に、3次元ガウスの進行的な密度化は3次元生成タスクにおいて著しく速く収束することを示した。
論文 参考訳(メタデータ) (2023-09-28T17:55:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。