YOLOR-Based Multi-Task Learning
- URL: http://arxiv.org/abs/2309.16921v1
- Date: Fri, 29 Sep 2023 01:42:21 GMT
- Title: YOLOR-Based Multi-Task Learning
- Authors: Hung-Shuo Chang, Chien-Yao Wang, Richard Robert Wang, Gene Chou,
Hong-Yuan Mark Liao
- Abstract summary: Multi-task learning (MTL) aims to learn multiple tasks using a single model and jointly improve all of them assuming generalization and shared semantics.
We propose building on You Only Learn One Representation (YOLOR), a network architecture specifically designed for multitasking.
We find that our method achieves competitive performance on all tasks while maintaining a low parameter count and without any pre-training.
- Score: 12.5920336941241
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-task learning (MTL) aims to learn multiple tasks using a single model
and jointly improve all of them assuming generalization and shared semantics.
Reducing conflicts between tasks during joint learning is difficult and
generally requires careful network design and extremely large models. We
propose building on You Only Learn One Representation (YOLOR), a network
architecture specifically designed for multitasking. YOLOR leverages both
explicit and implicit knowledge, from data observations and learned latents,
respectively, to improve a shared representation while minimizing the number of
training parameters. However, YOLOR and its follow-up, YOLOv7, only trained two
tasks at once. In this paper, we jointly train object detection, instance
segmentation, semantic segmentation, and image captioning. We analyze tradeoffs
and attempt to maximize sharing of semantic information. Through our
architecture and training strategies, we find that our method achieves
competitive performance on all tasks while maintaining a low parameter count
and without any pre-training. We will release code soon.
Related papers
- Cross-Task Affinity Learning for Multitask Dense Scene Predictions [5.939164722752263]
Multitask learning (MTL) has become prominent for its ability to predict multiple tasks jointly.
We introduce the Cross-Task Affinity Learning (CTAL) module, a lightweight framework that enhances task refinement in multitask networks.
Our results demonstrate state-of-the-art MTL performance for both CNN and transformer backbones, using significantly fewer parameters than single-task learning.
arXiv Detail & Related papers (2024-01-20T05:31:47Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Musketeer: Joint Training for Multi-task Vision Language Model with Task Explanation Prompts [75.75548749888029]
We present a vision-language model whose parameters are jointly trained on all tasks and fully shared among multiple heterogeneous tasks.
With a single model, Musketeer achieves results comparable to or better than strong baselines trained on single tasks, almost uniformly across multiple tasks.
arXiv Detail & Related papers (2023-05-11T17:57:49Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
We study whether sparsely activated Mixture-of-Experts (MoE) improve multi-task learning.
We devise task-aware gating functions to route examples from different tasks to specialized experts.
This results in a sparsely activated multi-task model with a large number of parameters, but with the same computational cost as that of a dense model.
arXiv Detail & Related papers (2022-04-16T00:56:12Z) - Rethinking Hard-Parameter Sharing in Multi-Task Learning [20.792654758645302]
Hard parameter sharing in multi-task learning (MTL) allows tasks to share some of model parameters, reducing storage cost and improving prediction accuracy.
The common sharing practice is to share bottom layers of a deep neural network among tasks while using separate top layers for each task.
Using separate bottom-layer parameters could achieve significantly better performance than the common practice.
arXiv Detail & Related papers (2021-07-23T17:26:40Z) - Multi-Task Learning with Deep Neural Networks: A Survey [0.0]
Multi-task learning (MTL) is a subfield of machine learning in which multiple tasks are simultaneously learned by a shared model.
We give an overview of multi-task learning methods for deep neural networks, with the aim of summarizing both the well-established and most recent directions within the field.
arXiv Detail & Related papers (2020-09-10T19:31:04Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
Multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint.
We provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision.
arXiv Detail & Related papers (2020-04-28T09:15:50Z) - Adversarial Continual Learning [99.56738010842301]
We propose a hybrid continual learning framework that learns a disjoint representation for task-invariant and task-specific features.
Our model combines architecture growth to prevent forgetting of task-specific skills and an experience replay approach to preserve shared skills.
arXiv Detail & Related papers (2020-03-21T02:08:17Z) - MTI-Net: Multi-Scale Task Interaction Networks for Multi-Task Learning [82.62433731378455]
We show that tasks with high affinity at a certain scale are not guaranteed to retain this behaviour at other scales.
We propose a novel architecture, namely MTI-Net, that builds upon this finding.
arXiv Detail & Related papers (2020-01-19T21:02:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.