論文の概要: A deep neural network framework for dynamic multi-valued mapping estimation and its applications
- arxiv url: http://arxiv.org/abs/2407.00295v1
- Date: Sat, 29 Jun 2024 03:26:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 05:41:03.352178
- Title: A deep neural network framework for dynamic multi-valued mapping estimation and its applications
- Title(参考訳): 動的多値マッピング推定のためのディープニューラルネットワークフレームワークとその応用
- Authors: Geng Li, Di Qiu, Lok Ming Lui,
- Abstract要約: 本稿では、生成ネットワークと分類コンポーネントを組み込んだディープニューラルネットワークフレームワークを提案する。
本研究の目的は、信頼性の高い不確実性測定を提供することにより、入力と出力の間の動的多値写像をモデル化することである。
実験結果から,不確実性を考慮した動的多値写像を精度良く推定できることが示唆された。
- 参考スコア(独自算出の注目度): 3.21704928672212
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the problem of modeling and estimating dynamic multi-valued mappings. While most mathematical models provide a unique solution for a given input, real-world applications often lack deterministic solutions. In such scenarios, estimating dynamic multi-valued mappings is necessary to suggest different reasonable solutions for each input. This paper introduces a deep neural network framework incorporating a generative network and a classification component. The objective is to model the dynamic multi-valued mapping between the input and output by providing a reliable uncertainty measurement. Generating multiple solutions for a given input involves utilizing a discrete codebook comprising finite variables. These variables are fed into a generative network along with the input, producing various output possibilities. The discreteness of the codebook enables efficient estimation of the output's conditional probability distribution for any given input using a classifier. By jointly optimizing the discrete codebook and its uncertainty estimation during training using a specially designed loss function, a highly accurate approximation is achieved. The effectiveness of our proposed framework is demonstrated through its application to various imaging problems, using both synthetic and real imaging data. Experimental results show that our framework accurately estimates the dynamic multi-valued mapping with uncertainty estimation.
- Abstract(参考訳): 本稿では,動的多値写像のモデル化と推定の問題に対処する。
ほとんどの数学的モデルは与えられた入力に対してユニークな解を提供するが、現実のアプリケーションは決定論的解を欠くことが多い。
このようなシナリオでは、各入力に対して異なる妥当な解を提案するためには、動的多値写像を推定する必要がある。
本稿では、生成ネットワークと分類コンポーネントを組み込んだディープニューラルネットワークフレームワークを提案する。
本研究の目的は、信頼性の高い不確実性測定を提供することにより、入力と出力の間の動的多値写像をモデル化することである。
与えられた入力に対して複数の解を生成するには、有限変数からなる離散コードブックを利用する必要がある。
これらの変数は入力とともに生成ネットワークに入力され、様々な出力可能性を生成する。
コードブックの離散性は、分類器を用いて任意の入力に対して出力の条件付き確率分布を効率的に推定することを可能にする。
特別に設計された損失関数を用いて、離散コードブックとトレーニング中の不確実性推定を共同で最適化することにより、高精度な近似を実現する。
提案手法の有効性は, 合成画像データと実画像データの両方を用いて, 様々な画像問題に適用することで実証する。
実験結果から,不確実性を考慮した動的多値写像を精度良く推定できることが示唆された。
関連論文リスト
- A Multimodal PDE Foundation Model for Prediction and Scientific Text Descriptions [13.48986376824454]
PDE基礎モデルは、ニューラルネットワークを使用して、複数の微分方程式への近似を同時に訓練する。
本稿では,変換器をベースとしたアーキテクチャを応用し,解演算子を近似した新しいマルチモーダル深層学習手法を提案する。
我々のアプローチは解釈可能な科学的テキスト記述を生成し、基礎となる力学と解の性質について深い洞察を提供する。
論文 参考訳(メタデータ) (2025-02-09T20:50:28Z) - Gaussian Mixture Models for Affordance Learning using Bayesian Networks [50.18477618198277]
Affordancesはアクション、オブジェクト、エフェクト間の関係の基本的な記述である。
本稿では,世界を探究し,その感覚経験から自律的にこれらの余裕を学習するエンボディエージェントの問題にアプローチする。
論文 参考訳(メタデータ) (2024-02-08T22:05:45Z) - Diffusion-Generative Multi-Fidelity Learning for Physical Simulation [24.723536390322582]
本研究では,微分方程式(SDE)に基づく拡散生成多忠実学習法を開発した。
付加的な入力(時間変数や空間変数)を条件にすることで、我々のモデルは効率的に多次元の解列を学習し、予測することができる。
論文 参考訳(メタデータ) (2023-11-09T18:59:05Z) - Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation
for Pixel-wise Regression [1.4528189330418977]
機械学習における不確実性推定は、予測モデルの信頼性と解釈可能性を高めるための最重要課題である。
画素ワイド回帰タスクに対するMIMO(Multiple-Input Multiple-Output)フレームワークの適応について述べる。
論文 参考訳(メタデータ) (2023-08-14T22:08:28Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - A deep learning based surrogate model for stochastic simulators [0.0]
シミュレータのための深層学習に基づく代理モデルを提案する。
我々は損失関数として条件付き最大平均誤差(CMMD)を利用する。
その結果,提案手法の優れた性能が得られた。
論文 参考訳(メタデータ) (2021-10-24T11:38:47Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
高度確率密度対応ネットワーク(PDC-Net+)は、精度の高い高密度対応を推定できる。
我々は、堅牢で一般化可能な不確実性予測に適したアーキテクチャと強化されたトレーニング戦略を開発する。
提案手法は,複数の挑戦的幾何マッチングと光学的フローデータセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-09-28T17:56:41Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - Modal Uncertainty Estimation via Discrete Latent Representation [4.246061945756033]
本稿では,インプットとアウトプットの1対1マッピングを,忠実な不確実性対策とともに学習するディープラーニングフレームワークを提案する。
我々のフレームワークは、現在の最先端手法よりもはるかに正確な不確実性推定を実証している。
論文 参考訳(メタデータ) (2020-07-25T05:29:34Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。