論文の概要: Efficient Anatomical Labeling of Pulmonary Tree Structures via Deep Point-Graph Representation-based Implicit Fields
- arxiv url: http://arxiv.org/abs/2309.17329v3
- Date: Thu, 17 Oct 2024 19:23:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:23:29.593976
- Title: Efficient Anatomical Labeling of Pulmonary Tree Structures via Deep Point-Graph Representation-based Implicit Fields
- Title(参考訳): Deep Point-Graph Representation-based Implicit Fieldsによる肺木構造の効率的な解剖学的ラベリング
- Authors: Kangxian Xie, Jiancheng Yang, Donglai Wei, Ziqiao Weng, Pascal Fua,
- Abstract要約: 肺疾患は世界中で死の主な死因の1つである。
高解像度画像スタックと高密度ボクセルグリッド上の標準CNNを用いた従来のアプローチは、計算効率、解像度の制限、局所的文脈、形状トポロジーの不十分な保存といった課題に直面している。
本手法は,高密度なボクセルからスパースポイント表現に移行し,メモリ効率の向上とグローバルなコンテキスト利用を実現することで,これらの問題に対処する。
- 参考スコア(独自算出の注目度): 45.16492100245491
- License:
- Abstract: Pulmonary diseases rank prominently among the principal causes of death worldwide. Curing them will require, among other things, a better understanding of the complex 3D tree-shaped structures within the pulmonary system, such as airways, arteries, and veins. Traditional approaches using high-resolution image stacks and standard CNNs on dense voxel grids face challenges in computational efficiency, limited resolution, local context, and inadequate preservation of shape topology. Our method addresses these issues by shifting from dense voxel to sparse point representation, offering better memory efficiency and global context utilization. However, the inherent sparsity in point representation can lead to a loss of crucial connectivity in tree-shaped structures. To mitigate this, we introduce graph learning on skeletonized structures, incorporating differentiable feature fusion for improved topology and long-distance context capture. Furthermore, we employ an implicit function for efficient conversion of sparse representations into dense reconstructions end-to-end. The proposed method not only delivers state-of-the-art performance in labeling accuracy, both overall and at key locations, but also enables efficient inference and the generation of closed surface shapes. Addressing data scarcity in this field, we have also curated a comprehensive dataset to validate our approach. Data and code are available at \url{https://github.com/M3DV/pulmonary-tree-labeling}.
- Abstract(参考訳): 肺疾患は世界中で死の主な死因の1つである。
治療には、気道、動脈、静脈などの肺系の複雑な3Dツリー構造をよりよく理解する必要がある。
高解像度画像スタックと高密度ボクセルグリッド上の標準CNNを用いた従来のアプローチは、計算効率、解像度の制限、局所的文脈、形状トポロジーの不十分な保存といった課題に直面している。
本手法は,高密度なボクセルからスパースポイント表現に移行し,メモリ効率の向上とグローバルなコンテキスト利用を実現することで,これらの問題に対処する。
しかし、点表現における本質的にの空間性は、木のような構造において重要な接続性を失う可能性がある。
これを軽減するため, 骨格構造に関するグラフ学習を導入し, トポロジと長距離コンテキストキャプチャの改善のために, 異なる特徴融合を取り入れた。
さらに,スパース表現を終末の高密度再構成に効率よく変換するために,暗黙の関数を用いる。
提案手法は, 局所的およびキー位置のラベル付け精度を向上するだけでなく, 効率的な推測と閉面形状の生成を可能にする。
この分野でのデータ不足に対処するため、私たちはアプローチを検証するために包括的なデータセットをキュレートしました。
データとコードは \url{https://github.com/M3DV/pulmonary-tree-labeling} で入手できる。
関連論文リスト
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
位相的正しさは多くの画像分割タスクにおいて重要な役割を果たす。
ほとんどのネットワークは、Diceのようなピクセル単位の損失関数を使って、トポロジカルな精度を無視して訓練されている。
トポロジ的に正確な画像セグメンテーションのための新しいグラフベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-05T16:20:14Z) - UGMAE: A Unified Framework for Graph Masked Autoencoders [67.75493040186859]
グラフマスク付きオートエンコーダのための統一フレームワークであるUGMAEを提案する。
まず,ノードの特異性を考慮した適応型特徴マスク生成器を開発した。
次に,階層型構造再構成と特徴再構成を併用し,総合的なグラフ情報を取得する。
論文 参考訳(メタデータ) (2024-02-12T19:39:26Z) - Learning to Approximate Adaptive Kernel Convolution on Graphs [4.434835769977399]
本稿では,拡散カーネルのスケールによって特徴集約の範囲を制御できる拡散学習フレームワークを提案する。
本モデルは,最先端データセットの性能評価のためのノードワイズ分類のための様々な標準で検証されている。
グラフ分類のための実世界の脳ネットワークデータにも検証され、アルツハイマー分類の実用性を実証している。
論文 参考訳(メタデータ) (2024-01-22T10:57:11Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - SwIPE: Efficient and Robust Medical Image Segmentation with Implicit Patch Embeddings [12.79344668998054]
正確な局所境界線とグローバルな形状コヒーレンスを実現するために,SwIPE(Segmentation with Implicit Patch Embeddings)を提案する。
その結果,最近の暗黙的アプローチよりもSwIPEは大幅に改善され,パラメータが10倍以上の最先端の離散手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-23T20:55:11Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Sign-Agnostic CONet: Learning Implicit Surface Reconstructions by
Sign-Agnostic Optimization of Convolutional Occupancy Networks [39.65056638604885]
畳み込み型ネットワークの符号非依存最適化により暗黙的表面再構成を学習する。
この目標をシンプルで効果的な設計で効果的に達成できることを示す。
論文 参考訳(メタデータ) (2021-05-08T03:35:32Z) - Self-Learning with Rectification Strategy for Human Parsing [73.06197841003048]
擬似ラベルの2つの典型的な誤りを補正する訓練可能なグラフ推論法を提案する。
再構成された特徴は、人体のトポロジー構造を表現する能力が強い。
本手法は、教師付き人間の解析作業において、他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-04-17T03:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。