ADMET property prediction through combinations of molecular fingerprints
- URL: http://arxiv.org/abs/2310.00174v1
- Date: Fri, 29 Sep 2023 22:39:18 GMT
- Title: ADMET property prediction through combinations of molecular fingerprints
- Authors: James H. Notwell and Michael W. Wood
- Abstract summary: Random forests or support vector machines paired with extended-connectivity fingerprints consistently outperformed recently developed methods.
A detailed investigation into regression algorithms and molecular fingerprints revealed gradient-boosted decision trees.
We successfully validated our model across 22 Therapeutics Data Commons ADMET benchmarks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While investigating methods to predict small molecule potencies, we found
random forests or support vector machines paired with extended-connectivity
fingerprints (ECFP) consistently outperformed recently developed methods. A
detailed investigation into regression algorithms and molecular fingerprints
revealed gradient-boosted decision trees, particularly CatBoost, in conjunction
with a combination of ECFP, Avalon, and ErG fingerprints, as well as 200
molecular properties, to be most effective. Incorporating a graph neural
network fingerprint further enhanced performance. We successfully validated our
model across 22 Therapeutics Data Commons ADMET benchmarks. Our findings
underscore the significance of richer molecular representations for accurate
property prediction.
Related papers
- Efficient Prediction of Peptide Self-assembly through Sequential and
Graphical Encoding [57.89530563948755]
This work provides a benchmark analysis of peptide encoding with advanced deep learning models.
It serves as a guide for a wide range of peptide-related predictions such as isoelectric points, hydration free energy, etc.
arXiv Detail & Related papers (2023-07-17T00:43:33Z) - ToDD: Topological Compound Fingerprinting in Computer-Aided Drug
Discovery [8.620443111346523]
In computer-aided drug discovery (CADD), virtual screening is used for identifying the drug candidates that are most likely to bind to a molecular target in a large library of compounds.
To address this problem, we developed a novel method using multi parameter persistence (MP) homology that produces topological fingerprints of the compounds as multidimensional vectors.
We show that the margin loss fine-tuning of pretrained Triplet networks attains highly competitive results in differentiating between compounds in the embedding space and ranking their likelihood of becoming effective drug candidates.
arXiv Detail & Related papers (2022-11-07T19:00:05Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - FP-GNN: a versatile deep learning architecture for enhanced molecular
property prediction [3.9838024725595167]
FP-GNN is a novel deep learning architecture that combined and simultaneously learned information from molecular graphs and fingerprints.
We conducted experiments on 13 public datasets, an unbiased LIT-PCBA dataset, and 14 phenotypic screening datasets for breast cell lines.
The FP-GNN algorithm achieved state-of-the-art performance on these datasets.
arXiv Detail & Related papers (2022-05-08T10:36:12Z) - MOOMIN: Deep Molecular Omics Network for Anti-Cancer Drug Combination
Therapy [2.446672595462589]
We propose a multimodal graph neural network that can predict the synergistic effect of drug combinations for cancer treatment.
Our model captures the representation based on the context of drugs at multiple scales based on a drug-protein interaction network and metadata.
We demonstrate that the model makes high-quality predictions over a wide range of cancer cell line tissues.
arXiv Detail & Related papers (2021-10-28T13:10:25Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
arXiv Detail & Related papers (2021-10-14T13:28:02Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
We propose Meta-MGNN, a novel model for few-shot molecular property prediction.
To exploit unlabeled molecular information, Meta-MGNN further incorporates molecular structure, attribute based self-supervised modules and self-attentive task weights.
Extensive experiments on two public multi-property datasets demonstrate that Meta-MGNN outperforms a variety of state-of-the-art methods.
arXiv Detail & Related papers (2021-02-16T01:55:34Z) - A Systematic Comparison Study on Hyperparameter Optimisation of Graph
Neural Networks for Molecular Property Prediction [8.02401104726362]
Graph neural networks (GNNs) have been proposed for a wide range of graph-related learning tasks.
In recent years there has been an increasing number of GNN systems that were applied to predict molecular properties.
arXiv Detail & Related papers (2021-02-08T15:40:50Z) - ProxyFAUG: Proximity-based Fingerprint Augmentation [81.15016852963676]
ProxyFAUG is a rule-based, proximity-based method of fingerprint augmentation.
The best performing positioning method on this dataset is improved by 40% in terms of median error and 6% in terms of mean error, with the use of the augmented dataset.
arXiv Detail & Related papers (2021-02-04T15:59:30Z) - Assessing Graph-based Deep Learning Models for Predicting Flash Point [52.931492216239995]
Graph-based deep learning (GBDL) models were implemented in predicting flash point for the first time.
Average R2 and Mean Absolute Error (MAE) scores of MPNN are, respectively, 2.3% lower and 2.0 K higher than previous comparable studies.
arXiv Detail & Related papers (2020-02-26T06:10:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.