Memorization With Neural Nets: Going Beyond the Worst Case
- URL: http://arxiv.org/abs/2310.00327v3
- Date: Fri, 06 Dec 2024 13:48:43 GMT
- Title: Memorization With Neural Nets: Going Beyond the Worst Case
- Authors: Sjoerd Dirksen, Patrick Finke, Martin Genzel,
- Abstract summary: In practice, deep neural networks are often able to easily interpolate their training data.
We introduce a simple randomized algorithm that constructs an interpolating three-layer neural network in time.
We obtain guarantees that are independent of the number of samples and hence move beyond worst-case memorization capacity bounds.
- Score: 5.03863830033243
- License:
- Abstract: In practice, deep neural networks are often able to easily interpolate their training data. To understand this phenomenon, many works have aimed to quantify the memorization capacity of a neural network architecture: the largest number of points such that the architecture can interpolate any placement of these points with any assignment of labels. For real-world data, however, one intuitively expects the presence of a benign structure so that interpolation already occurs at a smaller network size than suggested by memorization capacity. In this paper, we investigate interpolation by adopting an instance-specific viewpoint. We introduce a simple randomized algorithm that, given a fixed finite data set with two classes, with high probability constructs an interpolating three-layer neural network in polynomial time. The required number of parameters is linked to geometric properties of the two classes and their mutual arrangement. As a result, we obtain guarantees that are independent of the number of samples and hence move beyond worst-case memorization capacity bounds. We verify our theoretical result with numerical experiments and additionally investigate the effectiveness of the algorithm on MNIST and CIFAR-10.
Related papers
- Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
The present work describes multilayer multiset neuronal networks incorporating two or more layers of coincidence similarity neurons.
The work also explores the utilization of counter-prototype points, which are assigned to the image regions to be avoided.
arXiv Detail & Related papers (2023-08-28T12:55:13Z) - Predictions Based on Pixel Data: Insights from PDEs and Finite Differences [0.0]
This paper deals with approximation of time sequences where each observation is a matrix.
We show that with relatively small networks, we can represent exactly a class of numerical discretizations of PDEs based on the method of lines.
Our network architecture is inspired by those typically adopted in the approximation of time sequences.
arXiv Detail & Related papers (2023-05-01T08:54:45Z) - Dynamical systems' based neural networks [0.7874708385247353]
We build neural networks using a suitable, structure-preserving, numerical time-discretisation.
The structure of the neural network is then inferred from the properties of the ODE vector field.
We present two universal approximation results and demonstrate how to impose some particular properties on the neural networks.
arXiv Detail & Related papers (2022-10-05T16:30:35Z) - Investigating Neural Architectures by Synthetic Dataset Design [14.317837518705302]
Recent years have seen the emergence of many new neural network structures (architectures and layers)
We sketch a methodology to measure the effect of each structure on a network's ability, by designing ad hoc synthetic datasets.
We illustrate our methodology by building three datasets to evaluate each of the three following network properties.
arXiv Detail & Related papers (2022-04-23T10:50:52Z) - Quasi-orthogonality and intrinsic dimensions as measures of learning and
generalisation [55.80128181112308]
We show that dimensionality and quasi-orthogonality of neural networks' feature space may jointly serve as network's performance discriminants.
Our findings suggest important relationships between the networks' final performance and properties of their randomly initialised feature spaces.
arXiv Detail & Related papers (2022-03-30T21:47:32Z) - Dive into Layers: Neural Network Capacity Bounding using Algebraic
Geometry [55.57953219617467]
We show that the learnability of a neural network is directly related to its size.
We use Betti numbers to measure the topological geometric complexity of input data and the neural network.
We perform the experiments on a real-world dataset MNIST and the results verify our analysis and conclusion.
arXiv Detail & Related papers (2021-09-03T11:45:51Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - The Connection Between Approximation, Depth Separation and Learnability
in Neural Networks [70.55686685872008]
We study the connection between learnability and approximation capacity.
We show that learnability with deep networks of a target function depends on the ability of simpler classes to approximate the target.
arXiv Detail & Related papers (2021-01-31T11:32:30Z) - When Residual Learning Meets Dense Aggregation: Rethinking the
Aggregation of Deep Neural Networks [57.0502745301132]
We propose Micro-Dense Nets, a novel architecture with global residual learning and local micro-dense aggregations.
Our micro-dense block can be integrated with neural architecture search based models to boost their performance.
arXiv Detail & Related papers (2020-04-19T08:34:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.