A Comprehensive Review of Generative AI in Healthcare
- URL: http://arxiv.org/abs/2310.00795v1
- Date: Sun, 1 Oct 2023 21:13:14 GMT
- Title: A Comprehensive Review of Generative AI in Healthcare
- Authors: Yasin Shokrollahi, Sahar Yarmohammadtoosky, Matthew M. Nikahd, Pengfei
Dong, Xianqi Li, Linxia Gu
- Abstract summary: generative AI models, specifically transformers and diffusion models, have played a crucial role in analyzing diverse forms of data.
These models have played a crucial role in analyzing diverse forms of data, including medical imaging, protein structure prediction, clinical documentation, diagnostic assistance, radiology interpretation, clinical decision support, medical coding, and billing.
This review paper aims to offer a thorough overview of the generative AI applications in healthcare, focusing on transformers and diffusion models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advancement of Artificial Intelligence (AI) has catalyzed revolutionary
changes across various sectors, notably in healthcare. Among the significant
developments in this field are the applications of generative AI models,
specifically transformers and diffusion models. These models have played a
crucial role in analyzing diverse forms of data, including medical imaging
(encompassing image reconstruction, image-to-image translation, image
generation, and image classification), protein structure prediction, clinical
documentation, diagnostic assistance, radiology interpretation, clinical
decision support, medical coding, and billing, as well as drug design and
molecular representation. Such applications have enhanced clinical diagnosis,
data reconstruction, and drug synthesis. This review paper aims to offer a
thorough overview of the generative AI applications in healthcare, focusing on
transformers and diffusion models. Additionally, we propose potential
directions for future research to tackle the existing limitations and meet the
evolving demands of the healthcare sector. Intended to serve as a comprehensive
guide for researchers and practitioners interested in the healthcare
applications of generative AI, this review provides valuable insights into the
current state of the art, challenges faced, and prospective future directions.
Related papers
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - Deep Generative Models for 3D Medical Image Synthesis [1.931185411277237]
Deep generative modeling has emerged as a powerful tool for synthesizing realistic medical images.
This chapter explores various deep generative models for 3D medical image synthesis.
arXiv Detail & Related papers (2024-10-23T08:33:23Z) - Rapid Review of Generative AI in Smart Medical Applications [3.068678059223457]
Generative models, a key AI technology, have revolutionized medical image generation, data analysis, and diagnosis.
This article explores their application in intelligent medical devices.
Generative models show great promise in medical image generation, data analysis, and diagnosis.
arXiv Detail & Related papers (2024-06-08T03:34:47Z) - Practical Applications of Advanced Cloud Services and Generative AI Systems in Medical Image Analysis [17.4235794108467]
The article explores the transformative potential of generative AI in medical imaging, emphasizing its ability to generate syntheticACM-2 data.
By addressing limitations in dataset size and diversity, these models contribute to more accurate diagnoses and improved patient outcomes.
arXiv Detail & Related papers (2024-03-26T09:55:49Z) - Transformers in Healthcare: A Survey [11.189892739475633]
Transformer is a type of deep learning architecture initially developed to solve general-purpose Natural Language Processing (NLP) tasks.
We provide an overview of how this architecture has been adopted to analyze various forms of data, including medical imaging, structured and unstructured Electronic Health Records (EHR), social media, physiological signals, and biomolecular sequences.
We discuss the benefits and limitations of using transformers in healthcare and examine issues such as computational cost, model interpretability, fairness, alignment with human values, ethical implications, and environmental impact.
arXiv Detail & Related papers (2023-06-30T18:14:20Z) - Artificial General Intelligence for Medical Imaging Analysis [92.3940918983821]
Large-scale Artificial General Intelligence (AGI) models have achieved unprecedented success in a variety of general domain tasks.
These models face notable challenges arising from the medical field's inherent complexities and unique characteristics.
This review aims to offer insights into the future implications of AGI in medical imaging, healthcare, and beyond.
arXiv Detail & Related papers (2023-06-08T18:04:13Z) - Transformers in Medical Imaging: A Survey [88.03790310594533]
Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results.
Medical imaging has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields.
We provide a review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues.
arXiv Detail & Related papers (2022-01-24T18:50:18Z) - Medical Imaging and Machine Learning [16.240472115235253]
The National Institutes of Health in 2018 identified key focus areas for the future of artificial intelligence in medical imaging.
Data availability, need for novel computing architectures and explainable AI algorithms, are still relevant.
In this paper we explore challenges unique to high dimensional clinical imaging data, in addition to highlighting some of the technical and ethical considerations.
arXiv Detail & Related papers (2021-03-02T18:53:39Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
The pandemic of coronavirus disease 2019 (COVID-19) is spreading all over the world.
Medical imaging such as X-ray and computed tomography (CT) plays an essential role in the global fight against COVID-19.
The recently emerging artificial intelligence (AI) technologies further strengthen the power of the imaging tools and help medical specialists.
arXiv Detail & Related papers (2020-04-06T15:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.