Rapid Review of Generative AI in Smart Medical Applications
- URL: http://arxiv.org/abs/2406.06627v1
- Date: Sat, 8 Jun 2024 03:34:47 GMT
- Title: Rapid Review of Generative AI in Smart Medical Applications
- Authors: Yuan Sun, Jorge Ortiz,
- Abstract summary: Generative models, a key AI technology, have revolutionized medical image generation, data analysis, and diagnosis.
This article explores their application in intelligent medical devices.
Generative models show great promise in medical image generation, data analysis, and diagnosis.
- Score: 3.068678059223457
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the continuous advancement of technology, artificial intelligence has significantly impacted various fields, particularly healthcare. Generative models, a key AI technology, have revolutionized medical image generation, data analysis, and diagnosis. This article explores their application in intelligent medical devices. Generative models enhance diagnostic speed and accuracy, improving medical service quality and efficiency while reducing equipment costs. These models show great promise in medical image generation, data analysis, and diagnosis. Additionally, integrating generative models with IoT technology facilitates real-time data analysis and predictions, offering smarter healthcare services and aiding in telemedicine. Challenges include computational demands, ethical concerns, and scenario-specific limitations.
Related papers
- AI-Driven Healthcare: A Survey on Ensuring Fairness and Mitigating Bias [2.398440840890111]
AI applications have significantly improved diagnostic accuracy, treatment personalization, and patient outcome predictions.
These advancements also introduce substantial ethical and fairness challenges.
These biases can lead to disparities in healthcare delivery, affecting diagnostic accuracy and treatment outcomes across different demographic groups.
arXiv Detail & Related papers (2024-07-29T02:39:17Z) - Practical Applications of Advanced Cloud Services and Generative AI Systems in Medical Image Analysis [17.4235794108467]
The article explores the transformative potential of generative AI in medical imaging, emphasizing its ability to generate syntheticACM-2 data.
By addressing limitations in dataset size and diversity, these models contribute to more accurate diagnoses and improved patient outcomes.
arXiv Detail & Related papers (2024-03-26T09:55:49Z) - Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey [53.691704671844406]
The Internet of things (IoT) can significantly enhance the quality of human life, specifically in healthcare.
The human digital twin (HDT) is proposed as an innovative paradigm that can comprehensively characterize the replication of the individual human body.
HDT is envisioned to empower IoT-healthcare beyond the application of healthcare monitoring by acting as a versatile and vivid human digital testbed.
Recently, generative artificial intelligence (GAI) may be a promising solution because it can leverage advanced AI algorithms to automatically create, manipulate, and modify valuable while diverse data.
arXiv Detail & Related papers (2024-01-22T03:17:41Z) - A Comprehensive Review of Generative AI in Healthcare [0.0]
generative AI models, specifically transformers and diffusion models, have played a crucial role in analyzing diverse forms of data.
These models have played a crucial role in analyzing diverse forms of data, including medical imaging, protein structure prediction, clinical documentation, diagnostic assistance, radiology interpretation, clinical decision support, medical coding, and billing.
This review paper aims to offer a thorough overview of the generative AI applications in healthcare, focusing on transformers and diffusion models.
arXiv Detail & Related papers (2023-10-01T21:13:14Z) - A Revolution of Personalized Healthcare: Enabling Human Digital Twin
with Mobile AIGC [54.74071593520785]
Mobile AIGC can be a key enabling technology for an emerging application, called human digital twin (HDT)
HDT empowered by the mobile AIGC is expected to revolutionize the personalized healthcare by generating rare disease data, modeling high-fidelity digital twin, building versatile testbeds, and providing 24/7 customized medical services.
arXiv Detail & Related papers (2023-07-22T15:59:03Z) - HEAR4Health: A blueprint for making computer audition a staple of modern
healthcare [89.8799665638295]
Recent years have seen a rapid increase in digital medicine research in an attempt to transform traditional healthcare systems.
Computer audition can be seen to be lagging behind, at least in terms of commercial interest.
We categorise the advances needed in four key pillars: Hear, corresponding to the cornerstone technologies needed to analyse auditory signals in real-life conditions; Earlier, for the advances needed in computational and data efficiency; Attentively, for accounting to individual differences and handling the longitudinal nature of medical data.
arXiv Detail & Related papers (2023-01-25T09:25:08Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
We present a machine learning framework, AutoPrognosis 2.0, to develop diagnostic and prognostic models.
We provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank.
Our risk score has been implemented as a web-based decision support tool and can be publicly accessed by patients and clinicians worldwide.
arXiv Detail & Related papers (2022-10-21T16:31:46Z) - AI Approaches in Processing and Using Data in Personalized Medicine [0.0]
Advanced artificial intelligence techniques offer the opportunity to analyze such big data, consume them, and derive new knowledge to support personalized medical decisions.
New approaches like those based on advanced machine learning, federated learning, transfer learning, explainable artificial intelligence open new paths for more quality use of health and medical data in future.
arXiv Detail & Related papers (2022-07-26T11:11:39Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - Medical Imaging and Machine Learning [16.240472115235253]
The National Institutes of Health in 2018 identified key focus areas for the future of artificial intelligence in medical imaging.
Data availability, need for novel computing architectures and explainable AI algorithms, are still relevant.
In this paper we explore challenges unique to high dimensional clinical imaging data, in addition to highlighting some of the technical and ethical considerations.
arXiv Detail & Related papers (2021-03-02T18:53:39Z) - Photonics for artificial intelligence and neuromorphic computing [52.77024349608834]
Photonic integrated circuits have enabled ultrafast artificial neural networks.
Photonic neuromorphic systems offer sub-nanosecond latencies.
These systems could address the growing demand for machine learning and artificial intelligence.
arXiv Detail & Related papers (2020-10-30T21:41:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.