論文の概要: Recent Advances in Generative AI for Healthcare Applications
- arxiv url: http://arxiv.org/abs/2310.00795v2
- Date: Thu, 14 Aug 2025 19:43:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-18 14:51:22.662746
- Title: Recent Advances in Generative AI for Healthcare Applications
- Title(参考訳): 医療応用のためのジェネレーティブAIの最近の進歩
- Authors: Yasin Shokrollahi, Jose Colmenarez, Wenxi Liu, Sahar Yarmohammadtoosky, Matthew M. Nikahd, Pengfei Dong, Xianqi Li, Linxia Gu,
- Abstract要約: 拡散モデルとトランスフォーマーアーキテクチャによって導かれる生成AIは、医療画像において大きなブレークスルーを可能にした。
これらの革新は、臨床診断、データ再構成、および薬物表現を増強した。
本論文は、生成型AIの医療応用における最近の進歩を包括的に合成することを目的としている。
- 参考スコア(独自算出の注目度): 8.624749900970059
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of Artificial Intelligence (AI) has catalyzed revolutionary changes across various sectors, notably in healthcare. In particular, generative AI-led by diffusion models and transformer architectures-has enabled significant breakthroughs in medical imaging (including image reconstruction, image-to-image translation, generation, and classification), protein structure prediction, clinical documentation, diagnostic assistance, radiology interpretation, clinical decision support, medical coding, and billing, as well as drug design and molecular representation. These innovations have enhanced clinical diagnosis, data reconstruction, and drug synthesis. This review paper aims to offer a comprehensive synthesis of recent advances in healthcare applications of generative AI, with an emphasis on diffusion and transformer models. Moreover, we discuss current capabilities, highlight existing limitations, and outline promising research directions to address emerging challenges. Serving as both a reference for researchers and a guide for practitioners, this work offers an integrated view of the state of the art, its impact on healthcare, and its future potential.
- Abstract(参考訳): 人工知能(AI)の急速な進歩は、様々な分野、特に医療において革命的な変化を引き起こしている。
特に、拡散モデルとトランスフォーマーアーキテクチャによる生成AIは、医用画像(画像再構成、画像から画像への変換、生成、分類を含む)、タンパク質構造予測、臨床ドキュメント、診断補助、放射線学解釈、臨床決定支援、医用コーディング、請求、および薬物設計および分子表現において重要なブレークスルーを可能にした。
これらの革新により、臨床診断、データ再構成、薬物合成が強化された。
本稿では,AIの医療応用における最近の進歩を包括的に分析し,拡散モデルとトランスフォーマーモデルに焦点をあてる。
さらに,現状の機能について議論し,既存の限界を強調し,今後の課題に対処するための有望な研究方針を概説する。
研究者の参考として、そして実践者のためのガイドとして、この研究は、最先端、医療への影響、そしてその将来の可能性に関する統合的な見解を提供する。
関連論文リスト
- Causal Disentanglement for Robust Long-tail Medical Image Generation [80.15257897500578]
そこで本研究では,病的特徴と構造的特徴を独立に生成する新しい医用画像生成フレームワークを提案する。
本稿では,病理所見から導かれる拡散モデルを用いて病理像をモデル化し,種々の対物画像の生成を可能にする。
論文 参考訳(メタデータ) (2025-04-20T01:54:18Z) - Vision Foundation Models in Medical Image Analysis: Advances and Challenges [7.224426395050136]
ビジョンファウンデーションモデル(VFM)は、医療画像解析の分野で大きな進歩をもたらした。
本稿では,VFMの医用画像セグメンテーションへの適応に関する現状研究について概説する。
本稿では,アダプタによる改良,知識蒸留技術,マルチスケール・コンテキスト特徴モデリングの最近の発展について論じる。
論文 参考訳(メタデータ) (2025-02-20T14:13:46Z) - From large language models to multimodal AI: A scoping review on the potential of generative AI in medicine [40.23383597339471]
マルチモーダルAIは、イメージング、テキスト、構造化データを含む多様なデータモダリティを単一のモデルに統合することができる。
このスコーピングレビューは、マルチモーダルAIの進化を探求し、その方法、アプリケーション、データセット、臨床環境での評価を強調している。
診断支援,医療報告生成,薬物発見,会話型AIの革新を推進し,一過性のアプローチからマルチモーダルアプローチへのシフトを示唆した。
論文 参考訳(メタデータ) (2025-02-13T11:57:51Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - Deep Generative Models for 3D Medical Image Synthesis [1.931185411277237]
深部生成モデリングは、現実的な医療画像を合成するための強力なツールとして登場した。
本章では3次元医用画像合成のための様々な深部生成モデルについて考察する。
論文 参考訳(メタデータ) (2024-10-23T08:33:23Z) - Rapid Review of Generative AI in Smart Medical Applications [3.068678059223457]
生成モデルは、重要なAI技術であり、医療画像生成、データ分析、診断に革命をもたらした。
本稿では、インテリジェント医療機器への応用について検討する。
生成モデルは、医療画像生成、データ分析、診断において非常に有望である。
論文 参考訳(メタデータ) (2024-06-08T03:34:47Z) - Practical Applications of Advanced Cloud Services and Generative AI Systems in Medical Image Analysis [17.4235794108467]
本稿では、医用画像における生成AIの変換可能性について考察し、合成ACM-2データを生成する能力を強調した。
データセットのサイズと多様性の制限に対処することにより、これらのモデルはより正確な診断と患者の結果の改善に寄与する。
論文 参考訳(メタデータ) (2024-03-26T09:55:49Z) - Transformers in Healthcare: A Survey [11.189892739475633]
Transformerは、当初、汎用自然言語処理(NLP)タスクを解決するために開発されたディープラーニングアーキテクチャの一種である。
本稿では, 医療画像, 構造化・非構造化電子健康記録(EHR), ソーシャルメディア, 生理信号, 生体分子配列など, 様々な形態のデータを解析するために, このアーキテクチャがどのように採用されてきたのかを概説する。
医療におけるトランスフォーマーの利用のメリットと限界について議論し、計算コスト、モデル解釈可能性、公正性、人的価値との整合性、倫理的含意、環境影響などの問題を検討する。
論文 参考訳(メタデータ) (2023-06-30T18:14:20Z) - Artificial General Intelligence for Medical Imaging Analysis [92.3940918983821]
大規模人工知能(AGI)モデルは、様々な汎用ドメインタスクにおいて前例のない成功を収めた。
これらのモデルは、医学分野固有の複雑さとユニークな特徴から生じる顕著な課題に直面している。
このレビューは、医療画像、医療などにおけるAGIの将来的な意味についての洞察を提供することを目的としている。
論文 参考訳(メタデータ) (2023-06-08T18:04:13Z) - Transformers in Medical Imaging: A Survey [88.03790310594533]
トランスフォーマーはいくつかのコンピュータビジョン問題に適用され、最先端の結果が得られた。
医療画像はまた、局所受容野を持つCNNと比較して、グローバルな文脈を捉えられるトランスフォーマーへの関心が高まっている。
本稿では,最近提案された建築設計から未解決問題に至るまで,医療画像におけるトランスフォーマーの応用について概説する。
論文 参考訳(メタデータ) (2022-01-24T18:50:18Z) - Medical Imaging and Machine Learning [16.240472115235253]
2018年に国立衛生研究所は、医療画像における人工知能の未来における重要な焦点領域を特定した。
データ可用性、新しいコンピューティングアーキテクチャと説明可能なAIアルゴリズムの必要性は、いまだに関係している。
本稿では,高次元臨床画像データに特有の課題について考察するとともに,技術的・倫理的考察を紹介する。
論文 参考訳(メタデータ) (2021-03-02T18:53:39Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
機械学習とコンピュータビジョン手法は、医用画像解析において優れた性能を示している。
しかし、現在臨床応用はごくわずかである。
異なるソースや取得ドメインのデータへのモデルの不適切な転送性は、その理由の1つです。
論文 参考訳(メタデータ) (2020-10-14T16:34:21Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
新型コロナウイルス感染症(COVID-19)のパンデミックは世界中に広がっている。
X線やCT(Computerd Tomography)などの医用画像は、世界的な新型コロナウイルス対策に欠かせない役割を担っている。
最近登場した人工知能(AI)技術は、画像ツールの力を強化し、医療専門家を支援する。
論文 参考訳(メタデータ) (2020-04-06T15:21:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。