Lightweight Regression Model with Prediction Interval Estimation for Computer Vision-based Winter Road Surface Condition Monitoring
- URL: http://arxiv.org/abs/2310.00923v2
- Date: Fri, 26 Apr 2024 09:32:11 GMT
- Title: Lightweight Regression Model with Prediction Interval Estimation for Computer Vision-based Winter Road Surface Condition Monitoring
- Authors: Risto Ojala, Alvari Seppänen,
- Abstract summary: This paper proposes a deep learning regression model, SIWNet, capable of estimating road surface friction properties from camera images.
SIWNet extends state of the art by including an uncertainty estimation mechanism in the architecture.
The model was trained and tested with the SeeingThroughFog dataset, which features corresponding road friction sensor readings and images from an instrumented vehicle.
- Score: 0.4972323953932129
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Winter conditions pose several challenges for automated driving applications. A key challenge during winter is accurate assessment of road surface condition, as its impact on friction is a critical parameter for safely and reliably controlling a vehicle. This paper proposes a deep learning regression model, SIWNet, capable of estimating road surface friction properties from camera images. SIWNet extends state of the art by including an uncertainty estimation mechanism in the architecture. This is achieved by including an additional head in the network, which estimates a prediction interval. The prediction interval head is trained with a maximum likelihood loss function. The model was trained and tested with the SeeingThroughFog dataset, which features corresponding road friction sensor readings and images from an instrumented vehicle. Acquired results highlight the functionality of the prediction interval estimation of SIWNet, while the network also achieved similar point estimate accuracy as the previous state of the art. Furthermore, the SIWNet architecture is several times more lightweight than the previously applied state-of-the-art model, resulting in more practical and efficient deployment.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
Motion planners (MPs) are crucial for safe navigation in complex urban environments.
nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic.
We present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions.
arXiv Detail & Related papers (2024-06-15T18:53:45Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Interpretable Goal-Based model for Vehicle Trajectory Prediction in
Interactive Scenarios [4.1665957033942105]
Social interaction between a vehicle and its surroundings is critical for road safety in autonomous driving.
We propose a neural network-based model for the task of vehicle trajectory prediction in an interactive environment.
We implement and evaluate our model using the INTERACTION dataset and demonstrate the effectiveness of our proposed architecture.
arXiv Detail & Related papers (2023-08-08T15:00:12Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Self-Supervised Action-Space Prediction for Automated Driving [0.0]
We present a novel learned multi-modal trajectory prediction architecture for automated driving.
It achieves kinematically feasible predictions by casting the learning problem into the space of accelerations and steering angles.
The proposed methods are evaluated on real-world datasets containing urban intersections and roundabouts.
arXiv Detail & Related papers (2021-09-21T08:27:56Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Spatio-Temporal Look-Ahead Trajectory Prediction using Memory Neural
Network [6.065344547161387]
This paper attempts to solve the problem of Spatio-temporal look-ahead trajectory prediction using a novel recurrent neural network called the Memory Neuron Network.
The proposed model is computationally less intensive and has a simple architecture as compared to other deep learning models that utilize LSTMs and GRUs.
arXiv Detail & Related papers (2021-02-24T05:02:19Z) - Ellipse Loss for Scene-Compliant Motion Prediction [12.446392441065065]
We propose a novel ellipse loss that allows the models to better reason about scene compliance and predict more realistic trajectories.
Ellipse loss penalizes off-road predictions directly in a supervised manner, by projecting the output trajectories into the top-down map frame.
It takes into account actor dimensions and orientation, providing more direct training signals to the model.
arXiv Detail & Related papers (2020-11-05T23:33:56Z) - AutoCP: Automated Pipelines for Accurate Prediction Intervals [84.16181066107984]
This paper proposes an AutoML framework called Automatic Machine Learning for Conformal Prediction (AutoCP)
Unlike the familiar AutoML frameworks that attempt to select the best prediction model, AutoCP constructs prediction intervals that achieve the user-specified target coverage rate.
We tested AutoCP on a variety of datasets and found that it significantly outperforms benchmark algorithms.
arXiv Detail & Related papers (2020-06-24T23:13:11Z) - QTIP: Quick simulation-based adaptation of Traffic model per Incident
Parameters [6.59529078336196]
We describe QTIP: a simulation-based framework for adaptation of prediction models upon traffic disruption.
QTIP performs real-time simulations of the affected road for multiple scenarios, analyzes the results, and suggests a change to an ordinary prediction model.
We experiment QTIP in a case study of a Danish motorway, and the results show that QTIP can improve traffic prediction in the first critical minutes of road incidents.
arXiv Detail & Related papers (2020-03-09T13:07:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.