論文の概要: The Map Equation Goes Neural: Mapping Network Flows with Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2310.01144v3
- Date: Sun, 2 Jun 2024 18:05:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 20:50:48.272889
- Title: The Map Equation Goes Neural: Mapping Network Flows with Graph Neural Networks
- Title(参考訳): Map EquationがNeuralに:グラフニューラルネットワークによるネットワークフローのマッピング
- Authors: Christopher Blöcker, Chester Tan, Ingo Scholtes,
- Abstract要約: コミュニティ検出は、教師なしのデータ探索と、ネットワーク化されたシステムの組織構造を明らかにするために不可欠なツールである。
本研究では,非教師付きコミュニティ検出のための一般的な情報理論的目的関数であるマップ方程式を考察し,下降による勾配の微分可能なテンソル形式で表現する。
我々の定式化は、任意のニューラルネットワークアーキテクチャと互換性のあるマップ方程式を変換し、エンドツーエンドの学習を可能にし、ノード機能を導入し、クラスタの最適な数を自動的に選択します。
- 参考スコア(独自算出の注目度): 0.716879432974126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Community detection is an essential tool for unsupervised data exploration and revealing the organisational structure of networked systems. With a long history in network science, community detection typically relies on objective functions, optimised with custom-tailored search algorithms, but often without leveraging recent advances in deep learning. Recently, first works have started incorporating such objectives into loss functions for neural graph clustering and pooling. We consider the map equation, a popular information-theoretic objective function for unsupervised community detection, and express it in differentiable tensor form for optimisation through gradient descent. Our formulation turns the map equation compatible with any neural network architecture, enables end-to-end learning, incorporates node features, and chooses the optimal number of clusters automatically, all without requiring explicit regularisation. Applied to unsupervised graph clustering tasks, we achieve competitive performance against state-of-the-art neural graph clustering baselines in synthetic and real-world datasets.
- Abstract(参考訳): コミュニティ検出は、教師なしのデータ探索と、ネットワーク化されたシステムの組織構造を明らかにするために不可欠なツールである。
ネットワーク科学の長い歴史の中で、コミュニティ検出は一般的に客観的関数に依存しており、カスタマイズされた検索アルゴリズムで最適化されるが、近年のディープラーニングの進歩を活用できないことが多い。
近年,ニューラルグラフクラスタリングとプーリングの損失関数にそのような目的を取り入れた最初の研究が始まっている。
我々は、教師なしコミュニティ検出のための一般的な情報理論的目的関数であるマップ方程式を考察し、勾配降下による最適化のための微分可能なテンソル形式で表現する。
我々の定式化は、任意のニューラルネットワークアーキテクチャと互換性のあるマップ方程式を変換し、エンドツーエンドの学習を可能にし、ノードの特徴を取り入れ、クラスタの最適な数を自動的に選択する。
教師なしグラフクラスタリングタスクに適用すると、合成および実世界のデータセットにおける最先端のニューラルネットワーククラスタリングベースラインに対する競合性能が達成される。
関連論文リスト
- Formal Verification of Graph Convolutional Networks with Uncertain Node Features and Uncertain Graph Structure [7.133681867718039]
グラフニューラルネットワークは、機械学習の分野でますます人気が高まっている。
これらは、摂動が本質的に起こる安全クリティカルな環境に適用されている。
本研究は、基礎となる計算におけるすべての要素の依存関係を保存することによって、非通過ギャップに対処する。
論文 参考訳(メタデータ) (2024-04-23T14:12:48Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
グラフニューラルネットワークは、グラフベースの機械学習の選択フレームワークになりつつある。
本稿では,古典的メッセージパッシングに代えて,ノード特徴の局所分布を解析するグラフニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-17T13:04:23Z) - Graph Neural Operators for Classification of Spatial Transcriptomics
Data [1.408706290287121]
マウス脳組織サンプルにおける脳領域の予測に対する神経オペレーターの適用の有効性を検証するために,様々なグラフニューラルネットワークアプローチを取り入れた研究を提案する。
グラフニューラルネットワークのアプローチでは,F1スコアが72%近く向上し,すべてのベースラインやグラフネットワークのアプローチを上回った。
論文 参考訳(メタデータ) (2023-02-01T18:32:06Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Topological obstructions in neural networks learning [67.8848058842671]
損失勾配関数フローのグローバル特性について検討する。
損失関数とそのモースコンプレックスの位相データ解析を用いて,損失面の大域的特性と勾配軌道に沿った局所的挙動を関連付ける。
論文 参考訳(メタデータ) (2020-12-31T18:53:25Z) - Analyzing the Performance of Graph Neural Networks with Pipe Parallelism [2.269587850533721]
ノードやエッジの分類やリンクの予測といったタスクで大きな成功を収めたグラフニューラルネットワーク(GNN)に注目した。
グラフ技術の進歩には,大規模ネットワーク処理のための新たなアプローチが必要である。
私たちは、ディープラーニングコミュニティで成功したと知られている既存のツールとフレームワークを使用して、GNNを並列化する方法を研究します。
論文 参考訳(メタデータ) (2020-12-20T04:20:38Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Progressive Graph Convolutional Networks for Semi-Supervised Node
Classification [97.14064057840089]
グラフ畳み込みネットワークは、半教師付きノード分類のようなグラフベースのタスクに対処することに成功した。
本稿では,コンパクトかつタスク固有のグラフ畳み込みネットワークを自動構築する手法を提案する。
論文 参考訳(メタデータ) (2020-03-27T08:32:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。