論文の概要: Segment Any Building
- arxiv url: http://arxiv.org/abs/2310.01164v1
- Date: Mon, 2 Oct 2023 12:49:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-04 21:51:54.970495
- Title: Segment Any Building
- Title(参考訳): どんな建物でも
- Authors: Lei Li
- Abstract要約: 本研究は、リモートセンシング画像におけるセグメンテーションを構築するために、多様なデータセットと高度な表現学習モデルを使用することの有効性を強調した。
都市計画, 災害管理, 環境モニタリングなど, 様々な重要な分野における方法論の意義を実証する。
- 参考スコア(独自算出の注目度): 8.12405696290333
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The identification and segmentation of buildings in remote sensing imagery
has consistently been a important point of academic research. This work
highlights the effectiveness of using diverse datasets and advanced
representation learning models for the purpose of building segmentation in
remote sensing images. By fusing various datasets, we have broadened the scope
of our learning resources and achieved exemplary performance across several
datasets. Our innovative joint training process demonstrates the value of our
methodology in various critical areas such as urban planning, disaster
management, and environmental monitoring. Our approach, which involves
combining dataset fusion techniques and prompts from pre-trained models, sets a
new precedent for building segmentation tasks. The results of this study
provide a foundation for future exploration and indicate promising potential
for novel applications in building segmentation field.
- Abstract(参考訳): リモートセンシング画像における建物の識別とセグメンテーションは、一貫して学術研究の重要なポイントである。
本研究は,リモートセンシング画像におけるセグメンテーション構築を目的とした,多様なデータセットと高度な表現学習モデルの有効性を強調する。
さまざまなデータセットを融合させることで、学習リソースの範囲を広げ、複数のデータセットで模範的なパフォーマンスを実現しました。
本研究は,都市計画,災害管理,環境モニタリングといった重要分野において,我々の方法論の価値を実証するものである。
データセットの融合技術と事前訓練されたモデルからのプロンプトを組み合わせたアプローチは、セグメンテーションタスクを構築するための新しい前例を設定します。
本研究は今後の調査の基礎を提供し,建築セグメンテーション分野における新たな可能性を示すものである。
関連論文リスト
- Zero-Shot Object-Centric Representation Learning [72.43369950684057]
ゼロショット一般化のレンズによる現在の対象中心法について検討する。
8つの異なる合成および実世界のデータセットからなるベンチマークを導入する。
多様な実世界の画像のトレーニングにより、見えないシナリオへの転送性が向上することがわかった。
論文 参考訳(メタデータ) (2024-08-17T10:37:07Z) - Topological Perspectives on Optimal Multimodal Embedding Spaces [0.0]
本稿では,CLIPと最近のCLOOBの比較分析について述べる。
提案手法は,モダリティギャップドライバ,高次元と低次元の両方に存在するクラスタリング構造,および各埋め込み空間を形成する上で,次元崩壊が果たす重要な役割を包括的に検討することを含む。
論文 参考訳(メタデータ) (2024-05-29T08:28:23Z) - Explore In-Context Segmentation via Latent Diffusion Models [132.26274147026854]
潜在拡散モデル(LDM)は、文脈内セグメンテーションに有効な最小限のモデルである。
画像とビデオの両方のデータセットを含む、新しい、公正なコンテキスト内セグメンテーションベンチマークを構築します。
論文 参考訳(メタデータ) (2024-03-14T17:52:31Z) - Fine-grained building roof instance segmentation based on domain adapted
pretraining and composite dual-backbone [13.09940764764909]
本稿では,高解像度光衛星画像を用いた個々の建物の意味解釈を実現するための枠組みを提案する。
具体的には、レバレッジされたドメイン適応事前学習戦略と複合二重バックボーンは、非ネイティブな特徴学習を大いに促進する。
その結果,本手法は2023年のIEEE GRSS Data Fusion Contestの第一位に位置づけられた。
論文 参考訳(メタデータ) (2023-08-10T05:54:57Z) - Uncovering the Inner Workings of STEGO for Safe Unsupervised Semantic
Segmentation [68.8204255655161]
近年,コンピュータビジョンにおける汎用的特徴抽出バックボーンのトレーニングにおいて,自己指導型事前学習戦略が顕著な成果を上げている。
DINOの自己蒸留技術は、暗黙のラベルを使わずに、潜在空間における教師なしクラスタリングや生成した特徴の意味的対応など、興味深い特徴を持っている。
教師なしセマンティックセグメンテーションコントラストのSTEGO法は、DINO-pre-trained Vision Transformerの特徴対応を蒸留し、最近その新しい状態を設定した。
論文 参考訳(メタデータ) (2023-04-14T15:30:26Z) - Few Shot Semantic Segmentation: a review of methodologies, benchmarks, and open challenges [5.0243930429558885]
Few-Shot Semanticはコンピュータビジョンの新しいタスクであり、いくつかの例で新しいセマンティッククラスをセグメンテーションできるモデルを設計することを目的としている。
本稿では、Few-Shot Semanticの総合的な調査からなり、その進化を辿り、様々なモデル設計を探求する。
論文 参考訳(メタデータ) (2023-04-12T13:07:37Z) - Towards Geospatial Foundation Models via Continual Pretraining [22.825065739563296]
資源コストと炭素の影響を最小限に抑えた高効率基礎モデルを構築するための新しいパラダイムを提案する。
まず、複数のソースからコンパクトだが多様なデータセットを構築し、GeoPileと呼ぶ特徴の多様性を促進する。
次に,大規模なImageNet-22kモデルからの継続事前学習の可能性について検討し,多目的連続事前学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-09T07:39:02Z) - FloorLevel-Net: Recognizing Floor-Level Lines with
Height-Attention-Guided Multi-task Learning [49.30194762653723]
本研究は, 教師付き深層学習手法を用いて, ストリートビュー画像中のフロアレベル線の位置を求める問題に対処する。
まず、新しいデータセットをコンパイルし、トレーニングサンプルを合成する新しいデータ拡張スキームを開発する。
次にFloorLevel-Netを設計する。FloorLevel-Netは、ファサードと暗黙のフロアレベルラインの明示的な特徴を関連付けるマルチタスク学習ネットワークである。
論文 参考訳(メタデータ) (2021-07-06T08:17:59Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
移動可能なカメラで撮影された単一の画像で、自己教師付き検出とセグメンテーションのアプローチを導入する。
我々は、提案に基づくセグメンテーションネットワークのトレーニングに利用する自己教師付き損失関数を利用する。
本手法は,標準ベンチマークから視覚的に切り離された画像の人間の検出とセグメント化に応用し,既存の自己監督手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-11T08:34:40Z) - Bidirectional Graph Reasoning Network for Panoptic Segmentation [126.06251745669107]
本稿では,BGRNet(Bidirectional Graph Reasoning Network)を導入し,前景物と背景物間のモジュラー内およびモジュラー間関係について検討する。
BGRNetはまず、インスタンスとセマンティックセグメンテーションの両方でイメージ固有のグラフを構築し、提案レベルとクラスレベルで柔軟な推論を可能にする。
論文 参考訳(メタデータ) (2020-04-14T02:32:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。