論文の概要: DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model
- arxiv url: http://arxiv.org/abs/2310.01412v5
- Date: Sat, 09 Nov 2024 02:41:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:03:50.872382
- Title: DriveGPT4: Interpretable End-to-end Autonomous Driving via Large Language Model
- Title(参考訳): DriveGPT4:大規模言語モデルによるエンドツーエンド自律運転の解釈
- Authors: Zhenhua Xu, Yujia Zhang, Enze Xie, Zhen Zhao, Yong Guo, Kwan-Yee. K. Wong, Zhenguo Li, Hengshuang Zhao,
- Abstract要約: 本研究は,マルチモーダル大言語モデル(MLLM)に基づく新しい解釈可能なエンドツーエンド自動運転システムであるDriveGPT4を紹介する。
DriveGPT4は、車両動作の解釈を促進し、関連する推論を提供し、ユーザによるさまざまな質問に効果的に対処する。
- 参考スコア(独自算出の注目度): 84.29836263441136
- License:
- Abstract: Multimodal large language models (MLLMs) have emerged as a prominent area of interest within the research community, given their proficiency in handling and reasoning with non-textual data, including images and videos. This study seeks to extend the application of MLLMs to the realm of autonomous driving by introducing DriveGPT4, a novel interpretable end-to-end autonomous driving system based on LLMs. Capable of processing multi-frame video inputs and textual queries, DriveGPT4 facilitates the interpretation of vehicle actions, offers pertinent reasoning, and effectively addresses a diverse range of questions posed by users. Furthermore, DriveGPT4 predicts low-level vehicle control signals in an end-to-end fashion.These advanced capabilities are achieved through the utilization of a bespoke visual instruction tuning dataset, specifically tailored for autonomous driving applications, in conjunction with a mix-finetuning training strategy. DriveGPT4 represents the pioneering effort to leverage LLMs for the development of an interpretable end-to-end autonomous driving solution. Evaluations conducted on the BDD-X dataset showcase the superior qualitative and quantitative performance of DriveGPT4. Additionally, the fine-tuning of domain-specific data enables DriveGPT4 to yield close or even improved results in terms of autonomous driving grounding when contrasted with GPT4-V.
- Abstract(参考訳): マルチモーダル大言語モデル(MLLM)は、画像やビデオを含む非テキストデータを扱う能力と推論能力から、研究コミュニティにおいて顕著な関心領域として浮上している。
本研究は,MLLMの自律運転領域への応用を,LCMに基づく新しい解釈可能なエンド・ツー・エンド自動運転システムであるDriveGPT4の導入により拡張することを目的とする。
複数フレームのビデオ入力とテキストクエリを処理できるDriveGPT4は、車両動作の解釈を促進し、関連する推論を提供し、ユーザによるさまざまな質問に効果的に対処する。
さらに、DriveGPT4は、低レベルの車両制御信号をエンドツーエンドで予測し、これらの高度な機能は、ミキシングファインタニングトレーニング戦略とともに、特に自動運転アプリケーション用に調整された、目覚ましい視覚指示チューニングデータセットを活用することによって達成される。
DriveGPT4は、解釈可能なエンドツーエンドの自動運転ソリューションの開発にLLMを活用する先駆的な取り組みである。
BDD-Xデータセットで行った評価では,DriveGPT4の質的,定量的な性能が向上した。
さらに、ドメイン固有のデータの微調整により、DriveGPT4は、GPT4-Vと対照的に自律走行グラウンドの点において、近いあるいは改善された結果を得ることができる。
関連論文リスト
- The Role of World Models in Shaping Autonomous Driving: A Comprehensive Survey [50.62538723793247]
ドライビング・ワールド・モデル(DWM)は、ドライビング・プロセス中のシーンの進化を予測することに焦点を当てている。
DWM法は、自律運転システムが動的運転環境をよりよく知覚し、理解し、相互作用することを可能にする。
論文 参考訳(メタデータ) (2025-02-14T18:43:15Z) - TeLL-Drive: Enhancing Autonomous Driving with Teacher LLM-Guided Deep Reinforcement Learning [61.33599727106222]
TeLL-Driveは、Teacher LLMを統合して、注意に基づく学生DRLポリシーをガイドするハイブリッドフレームワークである。
自己維持機構はDRLエージェントの探索とこれらの戦略を融合させ、政策収束を加速し、堅牢性を高める。
論文 参考訳(メタデータ) (2025-02-03T14:22:03Z) - PKRD-CoT: A Unified Chain-of-thought Prompting for Multi-Modal Large Language Models in Autonomous Driving [8.971981009717284]
本研究では、PKRD-CoTというゼロショットチェーン・オブ・ソートプロンプト設計を提案し、MLLMの自律運転システムへのシームレスな統合について検討する。
我々の設計では、MLLMは事前の経験なく問題に対処できるため、非構造自律運転環境における有効性を高めることができる。
論文 参考訳(メタデータ) (2024-12-02T23:08:38Z) - Large Language Models for Autonomous Driving (LLM4AD): Concept, Benchmark, Experiments, and Challenges [15.52530518623987]
大規模言語モデル(LLM)は、自律運転システムの様々な側面を強化する可能性を秘めている。
本稿では,自動走行(LLM4AD)のためのLLMの設計概念について紹介する。
LLM4ADシステムの性能とポテンシャルを徹底的に評価し、実世界の車両プラットフォーム上で一連の実験を行う。
論文 参考訳(メタデータ) (2024-10-20T04:36:19Z) - CoVLA: Comprehensive Vision-Language-Action Dataset for Autonomous Driving [1.727597257312416]
CoVLA(Comprehensive Vision-Language-Action)データセットは、80時間以上にわたる現実世界の運転ビデオで構成されている。
このデータセットは、堅牢で解釈可能で、データ駆動の自動運転システムのためのフレームワークを確立する。
論文 参考訳(メタデータ) (2024-08-19T09:53:49Z) - Probing Multimodal LLMs as World Models for Driving [72.18727651074563]
自律運転におけるMLLM(Multimodal Large Language Models)の適用について検討する。
GPT-4oのようなモデルの開発は進んでいるが、複雑な運転環境における性能は未解明のままである。
論文 参考訳(メタデータ) (2024-05-09T17:52:42Z) - DriveMLM: Aligning Multi-Modal Large Language Models with Behavioral
Planning States for Autonomous Driving [69.82743399946371]
DriveMLMは、現実的なシミュレータでクローズループの自律運転を実行するためのフレームワークである。
モジュールADシステムの動作計画モジュールをモデル化するために,MLLM (Multi-modal LLM) を用いる。
このモデルは、Apolloのような既存のADシステムでプラグイン・アンド・プレイすることで、クローズループ運転を行うことができる。
論文 参考訳(メタデータ) (2023-12-14T18:59:05Z) - Reason2Drive: Towards Interpretable and Chain-based Reasoning for Autonomous Driving [38.28159034562901]
Reason2Driveは600万以上のビデオテキストペアを備えたベンチマークデータセットである。
我々は、自律運転プロセスが知覚、予測、推論ステップの逐次的な組み合わせであると特徴付けている。
本稿では,自律システムにおける連鎖型推論性能を評価するための新しい集計評価指標を提案する。
論文 参考訳(メタデータ) (2023-12-06T18:32:33Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
大規模言語モデル(LLM)は、文脈理解、論理的推論、回答生成などの能力を示した。
本稿では,自動走行のための大規模言語モデル (LLM4AD) に関する研究ラインを体系的にレビューする。
論文 参考訳(メタデータ) (2023-11-02T07:23:33Z) - Receive, Reason, and React: Drive as You Say with Large Language Models
in Autonomous Vehicles [13.102404404559428]
本稿では,Large Language Models (LLMs) を利用した自律走行車における意思決定プロセスを強化する新しいフレームワークを提案する。
我々の研究は、自動運転と戦術的意思決定タスクのための環境の集合であるHighwayEnvの実験を含む。
また、リアルタイムのパーソナライズも検討し、LLMが音声コマンドに基づいて運転行動にどう影響するかを示す。
論文 参考訳(メタデータ) (2023-10-12T04:56:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。