Quantum Sensing with Erasure Qubits
- URL: http://arxiv.org/abs/2310.01512v1
- Date: Mon, 2 Oct 2023 18:05:10 GMT
- Title: Quantum Sensing with Erasure Qubits
- Authors: Pradeep Niroula, Jack Dolde, Xin Zheng, Jacob Bringewatt, Adam
Ehrenberg, Kevin C. Cox, Jeff Thompson, Michael J. Gullans, Shimon Kolkowitz,
Alexey V. Gorshkov
- Abstract summary: Erasure qubits have potential to reduce the overhead associated with fault tolerance.
We show theoretically that, for the same level of noise, an erasure qubit acts as a more precise sensor or clock.
Similar benefits of erasure qubits to sensing can be realized in other quantum platforms like Rydberg atoms and superconducting qubits
- Score: 4.133900392064984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The dominant noise in an "erasure qubit" is an erasure -- a type of error
whose occurrence and location can be detected. Erasure qubits have potential to
reduce the overhead associated with fault tolerance. To date, research on
erasure qubits has primarily focused on quantum computing and quantum
networking applications. Here, we consider the applicability of erasure qubits
to quantum sensing and metrology. We show theoretically that, for the same
level of noise, an erasure qubit acts as a more precise sensor or clock
compared to its non-erasure counterpart. We experimentally demonstrate this by
artificially injecting either erasure errors (in the form of atom loss) or
dephasing errors into a differential optical lattice clock comparison, and
observe enhanced precision in the case of erasure errors for the same injected
error rate. Similar benefits of erasure qubits to sensing can be realized in
other quantum platforms like Rydberg atoms and superconducting qubits
Related papers
- Surface Code with Imperfect Erasure Checks [0.0]
We investigate the consequences of using an imperfect but overhead-efficient erasure check for fault-tolerant quantum error correction with the surface code.
We show that, under physically reasonable assumptions, the threshold error rate is still at least over twice that for Pauli noise.
arXiv Detail & Related papers (2024-08-01T18:00:37Z) - Demonstrating a long-coherence dual-rail erasure qubit using tunable transmons [59.63080344946083]
We show that a "dual-rail qubit" consisting of a pair of resonantly coupled transmons can form a highly coherent erasure qubit.
We demonstrate mid-circuit detection of erasure errors while introducing $ 0.1%$ dephasing error per check.
This work establishes transmon-based dual-rail qubits as an attractive building block for hardware-efficient quantum error correction.
arXiv Detail & Related papers (2023-07-17T18:00:01Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
We propose a qubit encoding and gate protocol for $171$Yb neutral atom qubits that converts the dominant physical errors into erasures.
We estimate that 98% of errors can be converted into erasures.
arXiv Detail & Related papers (2022-01-10T18:56:31Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Effectiveness of Variable Distance Quantum Error Correcting Codes [1.0203602318836442]
We show that quantum programs can tolerate non-trivial errors and still produce usable output.
In addition, we propose using variable strength (distance) error correction, where overhead can be reduced by only protecting more sensitive parts of the quantum program with high distance codes.
arXiv Detail & Related papers (2021-12-19T02:45:18Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
We demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors.
In an error correction cycle taking only $1.1,mu$s, we demonstrate the preservation of four cardinal states of the logical qubit.
arXiv Detail & Related papers (2021-12-07T13:58:44Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Removing leakage-induced correlated errors in superconducting quantum
error correction [1.8397027011844889]
Quantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated.
Here, we report a reset protocol that returns a qubit to the ground state from all relevant higher level states.
We find lower rates of logical errors and an improved scaling and stability of error suppression with increasing qubit number.
arXiv Detail & Related papers (2021-02-11T17:11:11Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Discrimination of Ohmic thermal baths by quantum dephasing probes [68.8204255655161]
We evaluate the minimum error probability achievable by three different kinds of quantum probes, namely a qubit, a qutrit and a quantum register made of two qubits.
A qutrit probe outperforms a qubit one in the discrimination task, whereas a register made of two qubits does not offer any advantage.
arXiv Detail & Related papers (2020-08-06T08:51:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.