Surface Code with Imperfect Erasure Checks
- URL: http://arxiv.org/abs/2408.00842v1
- Date: Thu, 1 Aug 2024 18:00:37 GMT
- Title: Surface Code with Imperfect Erasure Checks
- Authors: Kathleen Chang, Shraddha Singh, Jahan Claes, Kaavya Sahay, James Teoh, Shruti Puri,
- Abstract summary: We investigate the consequences of using an imperfect but overhead-efficient erasure check for fault-tolerant quantum error correction with the surface code.
We show that, under physically reasonable assumptions, the threshold error rate is still at least over twice that for Pauli noise.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, a lot of effort has been devoted towards designing erasure qubits in which dominant physical noise excites leakage states whose population can be detected and returned to the qubit subspace. Interest in these erasure qubits has been driven by studies showing that the requirements for fault-tolerant quantum error correction are significantly relaxed when noise in every gate operation is dominated by erasures. However, these studies assume perfectly accurate erasure checks after every gate operation which generally come with undesirable time and hardware overhead costs. In this work, we investigate the consequences of using an imperfect but overhead-efficient erasure check for fault-tolerant quantum error correction with the surface code. We show that, under physically reasonable assumptions on the imperfect erasure checks, the threshold error rate is still at least over twice that for Pauli noise. We also study the impact of imperfect erasure checks on the effective error distance and find that it degrades the effective distance under a general error model in which a qubit suffers from depolarizing noise when interacting with a leaked qubit. We then identify a more restrictive but realistic noise model for a qubit that interacts with a leaked qubit, under which the effective error distance is twice that for Pauli noise. We apply our analysis to recently proposed superconducting dual-rail erasure qubits and show that achieving good performance surface code quantum memories with relaxed system requirements is possible.
Related papers
- Optimizing quantum error correction protocols with erasure qubits [42.00287729190062]
Erasure qubits offer a promising avenue toward reducing the overhead of quantum error correction protocols.
We focus on the performance of the surface code as a quantum memory.
Our results indicate that QEC protocols with erasure qubits can outperform the ones with state-of-the-art transmons.
arXiv Detail & Related papers (2024-08-01T18:00:01Z) - Limitations to Dynamical Error Suppression and Gate-Error Virtualization from Temporally Correlated Nonclassical Noise [0.0]
We study a minimal exactly solvable single-qubit model under Gaussian quantum dephasing noise.
For digital periodic control, we prove that, under mild conditions on the low-frequency behavior of the nonclassical noise spectrum, the gate fidelity saturates at a value that is strictly smaller than the one attainable in the absence of control history.
We find that only if decoupling can keep the qubit highly pure over a timescale larger than the correlation time of the noise, the bath approximately converges to its original statistics and a stable-in-time control performance is recovered.
arXiv Detail & Related papers (2024-07-05T18:00:00Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Quantum Sensing with Erasure Qubits [4.133900392064984]
Erasure qubits have potential to reduce the overhead associated with fault tolerance.
We show theoretically that, for the same level of noise, an erasure qubit acts as a more precise sensor or clock.
Similar benefits of erasure qubits to sensing can be realized in other quantum platforms like Rydberg atoms and superconducting qubits
arXiv Detail & Related papers (2023-10-02T18:05:10Z) - Demonstrating a long-coherence dual-rail erasure qubit using tunable transmons [59.63080344946083]
We show that a "dual-rail qubit" consisting of a pair of resonantly coupled transmons can form a highly coherent erasure qubit.
We demonstrate mid-circuit detection of erasure errors while introducing $ 0.1%$ dephasing error per check.
This work establishes transmon-based dual-rail qubits as an attractive building block for hardware-efficient quantum error correction.
arXiv Detail & Related papers (2023-07-17T18:00:01Z) - Demonstrating a superconducting dual-rail cavity qubit with
erasure-detected logical measurements [1.8914818474995836]
We demonstrate a projective logical measurement with integrated erasure detection and use it to measure dual-rail qubit idling errors.
We measure logical state preparation and measurement errors at the $0.01%$-level and detect over $99%$ of cavity decay events as erasures.
These findings represent the first confirmation of the expected error hierarchy necessary to dual-rail erasure qubits into a highly efficient erasure code.
arXiv Detail & Related papers (2023-07-06T17:52:00Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Experimental demonstration of continuous quantum error correction [0.0]
We implement a continuous quantum bit-flip correction code in a multi-qubit architecture.
We achieve an average bit-flip detection efficiency of up to 91%.
Our results showcase resource-efficient stabilizer measurements in a multi-qubit architecture.
arXiv Detail & Related papers (2021-07-23T18:00:55Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.