論文の概要: Ravestate: Distributed Composition of a Causal-Specificity-Guided
Interaction Policy
- arxiv url: http://arxiv.org/abs/2310.01943v1
- Date: Tue, 3 Oct 2023 10:38:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-04 14:49:54.339536
- Title: Ravestate: Distributed Composition of a Causal-Specificity-Guided
Interaction Policy
- Title(参考訳): ravestate:因果特異性に基づくインタラクションポリシの分散構成
- Authors: Joseph Birkner, Andreas Dolp, Negin Karimi, Nikita Basargin, Alona
Kharchenko and Rafael Hostettler
- Abstract要約: 人間とロボットのインタラクションポリシー設計では、ルールベースの手法は効率的、説明可能、表現可能、直感的である。
本稿では,ルールベースのシンボルシステム設計の先行研究を洗練するSignal-Rule-Slotフレームワークを提案する。
我々はCausal Pathway Self-informationと呼ばれるインタラクションルールユーティリティを新たに導入する。
- 参考スコア(独自算出の注目度): 0.8039067099377079
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In human-robot interaction policy design, a rule-based method is efficient,
explainable, expressive and intuitive. In this paper, we present the
Signal-Rule-Slot framework, which refines prior work on rule-based symbol
system design and introduces a new, Bayesian notion of interaction rule utility
called Causal Pathway Self-information. We offer a rigorous theoretical
foundation as well as a rich open-source reference implementation Ravestate,
with which we conduct user studies in text-, speech-, and vision-based
scenarios. The experiments show robust contextual behaviour of our
probabilistically informed rule-based system, paving the way for more effective
human-machine interaction.
- Abstract(参考訳): 人間-ロボットインタラクションポリシー設計では、ルールベースの手法は効率的、説明可能、表現可能、直感的である。
本稿では,ルールに基づくシンボルシステム設計の先行研究を洗練し,Causal Pathway Self-informationと呼ばれるインタラクションルールユーティリティのベイズ的概念を導入するSignal-Rule-Slotフレームワークを提案する。
我々は、厳密な理論的基礎と豊富なオープンソースリファレンス実装であるravestateを提供し、テキスト、音声、視覚ベースのシナリオでユーザー研究を行う。
実験では、確率的に情報を得たルールベースのシステムの強い文脈的振る舞いを示し、より効果的な人間と機械の相互作用の道を開いた。
関連論文リスト
- Advancing Interactive Explainable AI via Belief Change Theory [5.842480645870251]
この種の形式化は、対話的な説明を開発するためのフレームワークと方法論を提供する、と我々は主張する。
まず,人間と機械の間で共有される説明情報を表現するために,論理に基づく新しい形式を定義した。
次に、対話型XAIの現実シナリオについて検討し、新しい知識と既存の知識の優先順位が異なり、フォーマリズムがインスタンス化される可能性がある。
論文 参考訳(メタデータ) (2024-08-13T13:11:56Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
マルチエージェント軌道予測とソーシャルロボットナビゲーションの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - Conformal Policy Learning for Sensorimotor Control Under Distribution
Shifts [61.929388479847525]
本稿では,センサコントローラの観測値の分布変化を検知・応答する問題に焦点をあてる。
鍵となる考え方は、整合量子を入力として取ることができるスイッチングポリシーの設計である。
本稿では, 基本方針を異なる特性で切り替えるために, 共形量子関数を用いてこのようなポリシーを設計する方法を示す。
論文 参考訳(メタデータ) (2023-11-02T17:59:30Z) - Dialectical Reconciliation via Structured Argumentative Dialogues [14.584998154271512]
我々のフレームワークは,説明者(AIエージェント)と説明者(ヒューマンユーザ)の知識の相違に対処するための弁証的調和を可能にする。
我々のフレームワークは、説明可能性の重要性が重要である領域において、効果的な人間とAIの相互作用を促進するための有望な方向を提供することを示唆している。
論文 参考訳(メタデータ) (2023-06-26T13:39:36Z) - A Regularized Implicit Policy for Offline Reinforcement Learning [54.7427227775581]
オフラインの強化学習は、環境とのさらなるインタラクションなしに、固定データセットから学習を可能にする。
フレキシブルだが十分に調整された完全実装ポリシーの学習を支援するフレームワークを提案する。
D4RLデータセットの実験とアブレーション研究により、我々のフレームワークとアルゴリズム設計の有効性が検証された。
論文 参考訳(メタデータ) (2022-02-19T20:22:04Z) - Verified Probabilistic Policies for Deep Reinforcement Learning [6.85316573653194]
我々は、深い強化学習のための確率的政策を検証する問題に取り組む。
本稿では,マルコフ決定プロセスの間隔に基づく抽象的アプローチを提案する。
本稿では,抽象的解釈,混合整数線形プログラミング,エントロピーに基づく洗練,確率的モデルチェックを用いて,これらのモデルを構築・解決する手法を提案する。
論文 参考訳(メタデータ) (2022-01-10T23:55:04Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
我々は、状態推定、制御、計画、学習のためのアクティブ推論の最先端理論と実装についてレビューする。
本稿では、適応性、一般化性、堅牢性の観点から、その可能性を示す関連する実験を紹介する。
論文 参考訳(メタデータ) (2021-12-03T12:10:26Z) - A GAN-Like Approach for Physics-Based Imitation Learning and Interactive
Character Control [2.2082422928825136]
物理的にシミュレートされた文字の対話的制御のためのシンプルで直感的なアプローチを提案する。
本研究は,GAN(Generative Adversarial Network)と強化学習に基づく。
我々は,本手法の適用性を,模倣と対話的な制御タスクの範囲で強調する。
論文 参考訳(メタデータ) (2021-05-21T00:03:29Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
本稿では,既存のアプローチと異なるニューラルネットワークの定義方法に焦点をあてる。
ニューラルネットワークの構造は、データとの相互作用にも拡張される制約の特別なクラスによって定義される。
提案した理論は時間領域にキャストされ, データを順序づけられた方法でネットワークに提示する。
論文 参考訳(メタデータ) (2020-09-01T09:07:25Z) - Discourse Coherence, Reference Grounding and Goal Oriented Dialogue [15.766916122461922]
我々は、混合開始型人間-コンピュータの参照通信を実現するための新しいアプローチについて論じる。
本稿では,談話間の制約を蓄積し,学習確率モデルを用いて解釈する参照通信領域における単純な対話システムについて述べる。
論文 参考訳(メタデータ) (2020-07-08T20:53:14Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
従来のロボットのアプローチは、環境の正確なモデル、タスクの実行方法の詳細な説明、現在の状態を追跡するための堅牢な認識システムに依存している。
強化学習アプローチは、タスクを記述するための報酬信号だけで、生の感覚入力から直接操作することができるが、非常にサンプル非効率で脆弱である。
本研究では,ロボットの知覚・運動パイプラインにおける不正確さを克服できる一般的な手法を得るために,モデルに基づく手法の強みと学習に基づく手法の柔軟性を組み合わせる。
論文 参考訳(メタデータ) (2020-05-21T19:47:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。