論文の概要: Quantum Visual Feature Encoding Revisited
- arxiv url: http://arxiv.org/abs/2405.19725v2
- Date: Tue, 20 Aug 2024 06:19:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 19:49:55.080854
- Title: Quantum Visual Feature Encoding Revisited
- Title(参考訳): Quantum Visual Feature Encoding Revisited
- Authors: Xuan-Bac Nguyen, Hoang-Quan Nguyen, Hugh Churchill, Samee U. Khan, Khoa Luu,
- Abstract要約: 本稿では,量子機械学習の初期段階である量子視覚符号化戦略を再考する。
根本原因を調べた結果,既存の量子符号化設計では符号化処理後の視覚的特徴の情報保存が不十分であることが判明した。
我々は、このギャップを最小限に抑えるために、量子情報保存と呼ばれる新しい損失関数を導入し、量子機械学習アルゴリズムの性能を向上した。
- 参考スコア(独自算出の注目度): 8.839645003062456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although quantum machine learning has been introduced for a while, its applications in computer vision are still limited. This paper, therefore, revisits the quantum visual encoding strategies, the initial step in quantum machine learning. Investigating the root cause, we uncover that the existing quantum encoding design fails to ensure information preservation of the visual features after the encoding process, thus complicating the learning process of the quantum machine learning models. In particular, the problem, termed "Quantum Information Gap" (QIG), leads to a gap of information between classical and corresponding quantum features. We provide theoretical proof and practical demonstrations of that found and underscore the significance of QIG, as it directly impacts the performance of quantum machine learning algorithms. To tackle this challenge, we introduce a simple but efficient new loss function named Quantum Information Preserving (QIP) to minimize this gap, resulting in enhanced performance of quantum machine learning algorithms. Extensive experiments validate the effectiveness of our approach, showcasing superior performance compared to current methodologies and consistently achieving state-of-the-art results in quantum modeling.
- Abstract(参考訳): 量子機械学習はしばらく前から導入されてきたが、コンピュータビジョンへの応用はまだ限られている。
そこで本稿では,量子機械学習の初期段階である量子視覚符号化戦略を再考する。
根本原因を調べた結果,既存の量子符号化設計では符号化処理後の視覚的特徴の情報保存に失敗し,量子機械学習モデルの学習過程を複雑化することがわかった。
特に、QIG(Quantum Information Gap)と呼ばれるこの問題は、古典的特徴と対応する量子的特徴の間の情報のギャップにつながる。
本稿では、量子機械学習アルゴリズムの性能に直接影響するため、QIGの意義を実証し、裏付ける理論的証明と実践的な実証を行う。
この課題に対処するために、量子情報保存(QIP)と呼ばれるシンプルだが効率的な新しい損失関数を導入し、このギャップを最小化し、量子機械学習アルゴリズムの性能を向上する。
大規模な実験により,提案手法の有効性を検証し,現在の手法と比較して優れた性能を示し,量子モデリングにおける最先端の成果を一貫して達成した。
関連論文リスト
- The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices [0.0]
本研究では,量子コンピューティングと機械学習(ML)の交わりについて検討する。
小型量子デバイスにおけるデータ再ロード方式やGAN(Generative Adversarial Networks)モデルなどのハイブリッド量子古典アルゴリズムの有効性を評価する。
論文 参考訳(メタデータ) (2024-04-01T20:55:03Z) - Quantum Mixed-State Self-Attention Network [3.1280831148667105]
本稿では、量子コンピューティングの原理と古典的な機械学習アルゴリズムを統合する新しい量子混合状態注意ネットワーク(QMSAN)を紹介する。
QMSANモデルは混合状態に基づく量子アテンション機構を採用し、量子領域内のクエリとキー間の類似性を効率的に直接推定することを可能にする。
本研究は,QMSANが低雑音に対する可換ロバスト性を有することを示すため,異なる量子雑音環境におけるモデルのロバスト性について検討した。
論文 参考訳(メタデータ) (2024-03-05T11:29:05Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
GAN(Generative Adversarial Networks)領域における古典的および量子コンピューティングパラダイムの相乗的融合について検討する。
我々の目的は、量子計算要素を従来のGANアーキテクチャにシームレスに統合し、トレーニングプロセスの強化のために新しい経路を開放することである。
この研究は量子化機械学習の最前線に位置し、量子システムの計算能力を活用するための重要な一歩である。
論文 参考訳(メタデータ) (2023-12-15T16:51:36Z) - Variational data encoding and correlations in quantum-enhanced machine
learning [2.436161840735876]
我々は,古典的データを量子状態に変換するための効果的な符号化プロトコルを開発した。
また、量子加速を妨げる必然的なノイズに対処する必要性にも対処する。
機械学習から学習の概念を適用することで、学習可能なプロセスを符号化するデータを描画する。
論文 参考訳(メタデータ) (2023-12-13T07:55:57Z) - Learning Quantum Processes with Quantum Statistical Queries [0.0]
本稿では,量子統計クエリモデル内で量子プロセス学習を研究するための最初の学習フレームワークを紹介する。
保証可能な性能保証を伴う任意の量子プロセスに対する効率的なQPSQ学習者を提案する。
この研究は、量子プロセスの学習可能性を理解するための重要なステップであり、セキュリティへの影響に光を当てている。
論文 参考訳(メタデータ) (2023-10-03T14:15:20Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。