Extraction of Medication and Temporal Relation from Clinical Text using
Neural Language Models
- URL: http://arxiv.org/abs/2310.02229v2
- Date: Sun, 8 Oct 2023 21:17:54 GMT
- Title: Extraction of Medication and Temporal Relation from Clinical Text using
Neural Language Models
- Authors: Hangyu Tu and Lifeng Han and Goran Nenadic
- Abstract summary: textbfMedTem project uses several advanced learning structures including BiLSTM-CRF and CNN-BiLSTM.
CNN-BiLSTM slightly wins the BiLSTM-CRF model on the i2b2-2009 clinical NER task yielding 75.67, 77.83, and 78.17 for precision, recall, and F1 scores.
BERT-CNN model also produced reasonable evaluation scores 64.48, 67.17, and 65.03 for P/R/F1 using Macro Avg.
- Score: 7.698164945017469
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Clinical texts, represented in electronic medical records (EMRs), contain
rich medical information and are essential for disease prediction, personalised
information recommendation, clinical decision support, and medication pattern
mining and measurement. Relation extractions between medication mentions and
temporal information can further help clinicians better understand the
patients' treatment history. To evaluate the performances of deep learning (DL)
and large language models (LLMs) in medication extraction and temporal
relations classification, we carry out an empirical investigation of
\textbf{MedTem} project using several advanced learning structures including
BiLSTM-CRF and CNN-BiLSTM for a clinical domain named entity recognition (NER),
and BERT-CNN for temporal relation extraction (RE), in addition to the
exploration of different word embedding techniques. Furthermore, we also
designed a set of post-processing roles to generate structured output on
medications and the temporal relation. Our experiments show that CNN-BiLSTM
slightly wins the BiLSTM-CRF model on the i2b2-2009 clinical NER task yielding
75.67, 77.83, and 78.17 for precision, recall, and F1 scores using Macro
Average. BERT-CNN model also produced reasonable evaluation scores 64.48,
67.17, and 65.03 for P/R/F1 using Macro Avg on the temporal relation extraction
test set from i2b2-2012 challenges. Code and Tools from MedTem will be hosted
at \url{https://github.com/HECTA-UoM/MedTem}
Related papers
- Enhancing In-Hospital Mortality Prediction Using Multi-Representational Learning with LLM-Generated Expert Summaries [3.5508427067904864]
In-hospital mortality (IHM) prediction for ICU patients is critical for timely interventions and efficient resource allocation.
This study integrates structured physiological data and clinical notes with Large Language Model (LLM)-generated expert summaries to improve IHM prediction accuracy.
arXiv Detail & Related papers (2024-11-25T16:36:38Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
Vision-Language Models (VLM) can support clinicians by analyzing medical images and engaging in natural language interactions.
VLMs often exhibit "hallucinogenic" behavior, generating textual outputs not grounded in contextual multimodal information.
We propose a new alignment algorithm that uses symbolic representations of clinical reasoning to ground VLMs in medical knowledge.
arXiv Detail & Related papers (2024-05-29T23:19:28Z) - Estimating the severity of dental and oral problems via sentiment
classification over clinical reports [0.8287206589886879]
Analyzing authors' sentiments in texts can be practical and useful in various fields, including medicine and dentistry.
Deep learning model based on Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network architecture, known as CNN-LSTM, was developed to detect severity level of patient's problem.
arXiv Detail & Related papers (2024-01-17T14:33:13Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
We propose a deep neural network that classifies the tissues from the phase and intensity data of complex OCT signals acquired at the needle tip.
We show that with 10% of the training set, our proposed pretraining strategy helps the model achieve an F1 score of 0.84 whereas the model achieves an F1 score of 0.60 without it.
arXiv Detail & Related papers (2023-04-26T14:11:04Z) - Time Associated Meta Learning for Clinical Prediction [78.99422473394029]
We propose a novel time associated meta learning (TAML) method to make effective predictions at multiple future time points.
To address the sparsity problem after task splitting, TAML employs a temporal information sharing strategy to augment the number of positive samples.
We demonstrate the effectiveness of TAML on multiple clinical datasets, where it consistently outperforms a range of strong baselines.
arXiv Detail & Related papers (2023-03-05T03:54:54Z) - A Multimodal Transformer: Fusing Clinical Notes with Structured EHR Data
for Interpretable In-Hospital Mortality Prediction [8.625186194860696]
We provide a novel multimodal transformer to fuse clinical notes and structured EHR data for better prediction of in-hospital mortality.
To improve interpretability, we propose an integrated gradients (IG) method to select important words in clinical notes.
We also investigate the significance of domain adaptive pretraining and task adaptive fine-tuning on the Clinical BERT.
arXiv Detail & Related papers (2022-08-09T03:49:52Z) - A causal learning framework for the analysis and interpretation of
COVID-19 clinical data [7.256237785391623]
The workflow consists in a multi-step approach that goes from identifying the main causes of patient's outcome through BSL.
We evaluate our approach on a feature-rich COVID-19 dataset, showing that the proposed framework provides a schematic overview of the multi-factorial processes that jointly contribute to the outcome.
Our approach yields to a highly interpretable tool correctly predicting the outcome of 85% of subjects based exclusively on 3 features.
arXiv Detail & Related papers (2021-05-14T15:58:18Z) - Clinical Temporal Relation Extraction with Probabilistic Soft Logic
Regularization and Global Inference [50.029659413650194]
Existing methods either require expensive feature engineering or are incapable of modeling the global dependencies among the events.
In this paper, we propose a novel method, Clinical Temporal ReLation Exaction with Probabilistic Soft Logic Regularization and Global Inference.
arXiv Detail & Related papers (2020-12-16T08:23:03Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z) - Epileptic Seizure Classification with Symmetric and Hybrid Bilinear
Models [20.376912072606412]
This paper proposes a novel hybrid bilinear deep learning network with an application in the clinical procedures of epilepsy classification diagnosis.
The accuracy of the diagnosis is also complicated by overlapping medical symptoms, varying levels of experience and inter-ob variability among clinical professions.
arXiv Detail & Related papers (2020-01-15T03:22:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.