Ergodic and mixing quantum channels: From two-qubit to many-body quantum systems
- URL: http://arxiv.org/abs/2310.02740v4
- Date: Wed, 18 Sep 2024 09:25:03 GMT
- Title: Ergodic and mixing quantum channels: From two-qubit to many-body quantum systems
- Authors: S. Aravinda, Shilpak Banerjee, Ranjan Modak,
- Abstract summary: We study the ergodic theory of quantum channels by characterizing different levels of ergodic hierarchy from integrable to mixing.
We also study interacting many-body quantum systems that include the famous Sachdev-Ye-Kitaev (SYK) model.
- Score: 1.9799527196428246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of classical ergodic theory has had a significant impact in the areas of mathematics, physics, and, in general, applied sciences. The quantum ergodic theory of Hamiltonian dynamics has its motivations to understand thermodynamics and statistical mechanics. Quantum channel, a completely positive trace-preserving map, represents a most general representation of quantum dynamics and is an essential aspect of quantum information theory and quantum computation. In this work, we study the ergodic theory of quantum channels by characterizing different levels of ergodic hierarchy from integrable to mixing. The quantum channels on single systems are constructed from the unitary operators acting on bipartite states and tracing out the environment. The interaction strength of these unitary operators measured in terms of operator entanglement provides sufficient conditions for the channel to be mixing. By using block diagonal unitary operators, we construct a set of non-ergodic channels. By using canonical form of two-qubit unitary operator, we analytically construct the channels on single qubit ranging from integrable to mixing. Moreover, we also study interacting many-body quantum systems that include the famous Sachdev-Ye-Kitaev (SYK) model and show that they display mixing within the framework of the quantum channel.
Related papers
- Markovian dynamics for a quantum/classical system and quantum trajectories [0.0]
We develop a general approach to the dynamics of quantum/classical systems.
An important feature is that, if the interaction allows for a flow of information from the quantum component to the classical one, necessarily the dynamics is dissipative.
arXiv Detail & Related papers (2024-03-24T08:26:54Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Faithfulness and sensitivity for ancilla-assisted process tomography [0.0]
A system-ancilla bipartite state capable of containing the complete information of an unknown quantum channel acting on the system is called faithful.
We complete the proof of the equivalence and introduce the generalization of faithfulness to various classes of quantum channels.
arXiv Detail & Related papers (2022-06-13T04:19:22Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - A thorough introduction to non-relativistic matrix mechanics in
multi-qudit systems with a study on quantum entanglement and quantum
quantifiers [0.0]
This article provides a deep and abiding understanding of non-relativistic matrix mechanics.
We derive and analyze the respective 1-qubit, 1-qutrit, 2-qubit, and 2-qudit coherent and incoherent density operators.
We also address the fundamental concepts of quantum nondemolition measurements, quantum decoherence and, particularly, quantum entanglement.
arXiv Detail & Related papers (2021-09-14T05:06:47Z) - Quantum collision models: open system dynamics from repeated
interactions [1.5293427903448022]
We present an extensive introduction to quantum collision models (CMs), also known as repeated interactions schemes.
This article could be seen as an introduction to fundamentals of open quantum systems theory since most main concepts of this are treated such as quantum maps, Lindblad master equation, steady states, POVMs, quantum trajectories and Schrodinger equation.
arXiv Detail & Related papers (2021-06-22T18:00:01Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.