論文の概要: JsonTuning: Towards Generalizable, Robust, and Controllable Instruction
Tuning
- arxiv url: http://arxiv.org/abs/2310.02953v1
- Date: Wed, 4 Oct 2023 16:44:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-05 13:59:10.758563
- Title: JsonTuning: Towards Generalizable, Robust, and Controllable Instruction
Tuning
- Title(参考訳): JsonTuning: 汎用性、ロバスト、制御可能なインストラクションチューニングを目指す
- Authors: Chang Gao, Wenxuan Zhang, Guizhen Chen, Wai Lam
- Abstract要約: 命令チューニングのための新しい構造-構造アプローチであるJsonTuningを提案する。
JsonTuningは、モデルが必須のタスク要素とその関係を理解するのを助けることで堅牢性を高める。
出力に対する明示的な制御を提供することで、制御性を向上させる。
- 参考スコア(独自算出の注目度): 62.65537623232481
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instruction tuning has emerged as a crucial process for harnessing the
capabilities of large language models (LLMs) by providing explicit task
instructions, leading to improved performance in various tasks. However,
prevalent text-to-text instruction tuning (TextTuning) methods suffer from
limitations in generalization, robustness, and controllability due to the
ambiguity and lack of explicit structure in tasks. In this paper, we propose
JsonTuning, a novel structure-to-structure approach for instruction tuning. By
leveraging the versatility and structured nature of JSON to represent tasks,
JsonTuning enhances generalization by helping the model understand essential
task elements and their relations, improves robustness by minimizing ambiguity,
and increases controllability by providing explicit control over the output. We
conduct a comprehensive comparative study with diverse language models and
evaluation benchmarks. Experimental results show that JsonTuning outperforms
TextTuning in various applications, showcasing improved performance,
adaptability, robustness, and controllability. By overcoming the limitations of
TextTuning, JsonTuning demonstrates significant potential for more effective
and reliable LLMs capable of handling diverse scenarios.
- Abstract(参考訳): インストラクションチューニングは、明示的なタスク命令を提供することによって、大規模言語モデル(LLM)の機能を活用するための重要なプロセスとして現れ、様々なタスクのパフォーマンスが向上した。
しかし、一般的なtext-to-text命令チューニング(texttuning)メソッドは、あいまいさとタスクの明示的な構造不足のため、一般化、堅牢性、制御性の制限に苦しむ。
本稿では,新しい構造から構造へのアプローチであるJsonTuningを提案する。
jsontuningは、jsonの汎用性と構造的な性質を活用してタスクを表現することにより、モデルが本質的なタスク要素とその関係を理解するのを支援し、あいまいさを最小限に抑えることによって堅牢性を改善し、出力を明示的に制御することで制御性を高める。
多様な言語モデルと評価ベンチマークを用いて総合的な比較研究を行う。
実験の結果、JsonTuningは様々なアプリケーションでTextTuningより優れており、パフォーマンス、適応性、堅牢性、制御性が改善されている。
jsontuningは、テキストチューニングの制限を克服することで、さまざまなシナリオを処理可能な、より効果的で信頼性の高いllmに対する大きな可能性を示している。
関連論文リスト
- Parameter-Efficient Fine-Tuning of Large Language Models using Semantic Knowledge Tuning [0.08795040582681389]
大規模言語モデル (LLMs) は近年,プロンプトを用いた特殊タスクにおいて大きな人気を集めている。
本稿では,ランダムトークンの代わりに有意な単語を用いたプロンプトおよびプレフィックスチューニングのためのセマンティック知識チューニング(SK-Tuning)を提案する。
実験結果から,SK-Tuningは,テキスト分類や理解などのタスクにおいて,より高速なトレーニング時間,少ないパラメータ,優れたパフォーマンスを示すことがわかった。
論文 参考訳(メタデータ) (2024-10-11T07:55:09Z) - SwitchCIT: Switching for Continual Instruction Tuning of Large Language Models [14.085371250265224]
大規模言語モデル(LLM)は、様々な領域、特に一般的な言語理解において印象的な能力を発揮している。
しかし、これらのモデルは大量のテキストデータに基づいて訓練されており、命令によって引き起こされる特定のタスクに対して微妙に最適化されていないかもしれない。
本研究は, LLMの連続的な命令学習において, パラメータ効率の高いチューニングモデルに演算をルーティングする切替機構を通じて, 破滅的な忘れに対処するものである。
論文 参考訳(メタデータ) (2024-07-16T14:37:33Z) - From Symbolic Tasks to Code Generation: Diversification Yields Better Task Performers [1.6958018695660049]
コードに関連するタスクを超えて、より多様な命令セットがコード生成のパフォーマンスを向上させることを示す。
我々の観察から,命令調整セットのより多様な意味空間が,命令に従う能力とタスクの実行能力を大幅に向上させることが示唆された。
論文 参考訳(メタデータ) (2024-05-30T07:54:07Z) - DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
インコンテキスト学習(ICL)により、トランスフォーマーベースの言語モデルでは、パラメータを更新することなく、いくつかの"タスクデモ"で特定のタスクを学習することができる。
ICLの特徴に対処する影響関数に基づく帰属手法DETAILを提案する。
ホワイトボックスモデルで得られた属性スコアがブラックボックスモデルに転送可能であることを示すことにより、モデル性能を向上させる上で、DETAILの広範な適用性を実験的に証明する。
論文 参考訳(メタデータ) (2024-05-22T15:52:52Z) - Enabling Natural Zero-Shot Prompting on Encoder Models via Statement-Tuning [55.265138447400744]
ステートメントチューニングは、有限文の集合として識別タスクをモデル化し、エンコーダモデルを訓練し、潜在的なステートメントを識別してラベルを決定するテクニックである。
その結果, ステートメント・チューニングは, パラメータが著しく少ない最先端のLCMと比較して, 競争性能が向上することを示した。
この研究は、いくつかの設計選択が少ショットとゼロショットの一般化に与える影響を調査し、ステートメントチューニングが控えめなトレーニングデータで高いパフォーマンスを達成できることを明らかにした。
論文 参考訳(メタデータ) (2024-04-19T14:05:03Z) - A Simple but Effective Approach to Improve Structured Language Model
Output for Information Extraction [11.165093163378152]
大規模言語モデル(LLM)は、命令に従って非構造化自然言語を生成する際、印象的な能力を示した。
本稿では,その構造的テキスト生成能力を高めるために,効率的なG&O手法を提案する。
論文 参考訳(メタデータ) (2024-02-20T20:42:02Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
大規模言語モデル(LLM)は、翻訳や要約といった条件付きシーケンス生成タスクを実行することができる。
入力文の後にタスク命令の位置をシフトさせることにより,LLMの指示追従能力を向上させることを提案する。
論文 参考訳(メタデータ) (2023-08-23T12:36:57Z) - Two-stage LLM Fine-tuning with Less Specialization and More
Generalization [93.12197594813378]
本稿では,Model Tuning (ProMoT) を用いた Prompt Tuning を提案する。
ProMoTは、タスク固有のフォーマット学習を、最初はプロンプトチューニングを行い、次にこのソフトプロンプトでモデル自体を微調整することで、追加的で取り外し可能なパラメータにオフロードする。
ProMoTは、微調整タスクと意味的に関連するコンテキスト内学習タスクの一般化を強化することもできる。
論文 参考訳(メタデータ) (2022-11-01T17:56:57Z) - SDA: Improving Text Generation with Self Data Augmentation [88.24594090105899]
自動データ拡張のための自己模倣学習フェーズを組み込むことにより,標準最大確率推定(MLE)パラダイムを改善することを提案する。
既存の文レベルの拡張戦略とは異なり,本手法はより汎用的で,任意のMLEベースの訓練手順に容易に適応できる。
論文 参考訳(メタデータ) (2021-01-02T01:15:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。