Dynamical Casimir Effects: The Need for Nonlocality in Time-Varying Dispersive Nanophotonics
- URL: http://arxiv.org/abs/2408.15504v1
- Date: Wed, 28 Aug 2024 03:20:35 GMT
- Title: Dynamical Casimir Effects: The Need for Nonlocality in Time-Varying Dispersive Nanophotonics
- Authors: S. Ali Hassani Gangaraj, George Hanson, Francesco Monticone,
- Abstract summary: We discuss the role of material nonlocality in Casimir effects in time-varying frequency-dispersive nanophotonic systems.
We show that local models may lead to nonphysical predictions, such as diverging emission rates of entangled polariton pairs.
Our work sheds light on the importance of nonlocal effects in this new frontier of nanophotonics.
- Score: 0.40964539027092906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Both real and virtual photons can be involved in light-matter interactions. A famous example of the observable implications of virtual photons -- vacuum fluctuations of the quantum electromagnetic field -- is the Casimir effect. Since quantum vacuum effects are weak, various mechanisms have been proposed to enhance and engineer them, ranging from static, e.g., strong optical resonances, to dynamic, e.g., systems with moving boundaries or time-varying optical properties, or a combination of them. In this Letter, we discuss the role of material nonlocality (spatial dispersion) in dynamical Casimir effects in time-varying frequency-dispersive nanophotonic systems. We first show that local models may lead to nonphysical predictions, such as diverging emission rates of entangled polariton pairs. We then theoretically demonstrate that nonlocality regularizes this behavior by correcting the asymptotic response of the system for large wavevectors and reveals physical effects missed by local models, including a significant broadening of the emission rate distribution, which are relevant for future experimental observations. Our work sheds light on the importance of nonlocal effects in this new frontier of nanophotonics.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Extending Non-Perturbative Simulation Techniques for Open-Quantum Systems to Excited-State Proton Transfer and Ultrafast Non-Adiabatic Dynamics [0.0]
We show how to include a continuous'reaction coordinate' of the proton transfer that allows exact simulations.
We also demonstrate how to retain an exact quantum treatment of dissipation and driving effects that could be used to study diverse problems in ultrafast photochemistry.
arXiv Detail & Related papers (2024-05-14T15:26:42Z) - Photon bunching in high-harmonic emission controlled by quantum light [0.0]
Recent theories have laid the groundwork for understanding how quantum-optical properties affect high-field photonics.
We demonstrate a new experimental approach that transduces some properties of a quantum-optical state through a strong-field nonlinearity.
Our results suggest that perturbing strong-field dynamics with quantum-optical states is a viable way to coherently control the generation of these states at short wavelengths.
arXiv Detail & Related papers (2024-04-08T12:53:42Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Non-perturbative mass renormalization effects in non-relativistic
quantum electrodynamics [0.0]
This work lays the foundation to accurately describe ground-state properties in multimode photonic environments.
We show how the multimode photon field influences various ground and excited-state properties of atomic and molecular systems.
arXiv Detail & Related papers (2023-10-04T23:38:13Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Self-Ordering of Individual Photons in Waveguide QED and Rydberg-Atom
Arrays [0.548253258922555]
We study the propagation of light through an optical waveguide that is chirally coupled to three-level quantum emitters.
We show that the additional laser-coupling to a third emitter state not only permits to control the properties of the bound state but can even eliminate it entirely.
We demonstrate this emerging photon-photon repulsion by analysing the quantum dynamics of multiple photons in large emitter arrays.
arXiv Detail & Related papers (2021-10-25T13:55:10Z) - Photon-mediated interactions near a Dirac photonic crystal slab [68.8204255655161]
We develop a theory of dipole radiation near photonic Dirac points in realistic structures.
We find positions where the nature of the collective interactions change from being coherent to dissipative ones.
Our results significantly improve the knowledge of Dirac light-matter interfaces.
arXiv Detail & Related papers (2021-07-01T14:21:49Z) - Shaping Dynamical Casimir Photons [0.0]
Space-time quantum metasurfaces have been proposed as a platform to realize this physics via modulation of their optical properties.
We develop a microscopic theory that applies both to moving mirrors with surface profile and atomic array meta-mirrors with perturbed lattice configuration.
The proposed space-time dynamical Casimir effect can be interpreted as an induced dynamical asymmetry in the quantum vacuum.
arXiv Detail & Related papers (2021-05-10T17:00:59Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.