論文の概要: TacoGFN: Target Conditioned GFlowNet for Structure-Based Drug Design
- arxiv url: http://arxiv.org/abs/2310.03223v3
- Date: Wed, 20 Dec 2023 22:30:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-22 18:23:47.080025
- Title: TacoGFN: Target Conditioned GFlowNet for Structure-Based Drug Design
- Title(参考訳): TacoGFN:構造に基づく医薬品設計のためのターゲット条件付きGFlowNet
- Authors: Tony Shen, Mohit Pandey, Jason Smith, Artem Cherkasov and Martin Ester
- Abstract要約: 我々は、特定のタンパク質ポケットターゲットに条件付けされた薬物様化合物の自動生成を目指している。
ポケットコンディショニングされた分子生成タスクをRL問題とし,ターゲット条件生成フローネットワークモデルであるTacoGFNを開発した。
- 参考スコア(独自算出の注目度): 4.157149426347366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We seek to automate the generation of drug-like compounds conditioned to
specific protein pocket targets. Most current methods approximate the
protein-molecule distribution of a finite dataset and, therefore struggle to
generate molecules with significant binding improvement over the training
dataset. We instead frame the pocket-conditioned molecular generation task as
an RL problem and develop TacoGFN, a target conditional Generative Flow Network
model. Our method is explicitly encouraged to generate molecules with desired
properties as opposed to fitting on a pre-existing data distribution. To this
end, we develop transformer-based docking score prediction to speed up docking
score computation and propose TacoGFN to explore molecule space efficiently.
Furthermore, we incorporate several rounds of active learning where generated
samples are queried using a docking oracle to improve the docking score
prediction. This approach allows us to accurately explore as much of the
molecule landscape as we can afford computationally. Empirically, molecules
generated using TacoGFN and its variants significantly outperform all baseline
methods across every property (Docking score, QED, SA, Lipinski), while being
orders of magnitude faster.
- Abstract(参考訳): 我々は,特定のタンパク質ポケットターゲットに調和した薬物様化合物の自動生成を目指している。
現在の方法のほとんどは有限データセットのタンパク質-分子分布を近似しており、トレーニングデータセットよりも結合性が大幅に向上した分子を生成するのに苦労している。
代わりに、ポケットコンディショニングされた分子生成タスクをRL問題とし、ターゲット条件生成フローネットワークモデルであるTacoGFNを開発する。
本手法は,既存のデータ分布に適合するのに対して,所望の特性を持つ分子を生成することを強く推奨する。
そこで本研究では,ドッキングスコア計算を高速化するトランスフォーマーベースのドッキングスコア予測を開発し,分子空間を効率的に探索するTacoGFNを提案する。
さらに,ドッキングスコア予測を改善するために,ドッキングオラクルを用いて生成されたサンプルを検索する,アクティブラーニングのラウンドを複数組み込んだ。
このアプローチによって、計算で得る限りの分子の景観を正確に探索することができます。
経験上、tacogfnとその変異体を用いて生成された分子は、全ての特性(ドッキングスコア、qed、sa、リピンスキー)における全てのベースラインメソッドを著しく上回っているが、桁違いに速い。
関連論文リスト
- GFlowNet Pretraining with Inexpensive Rewards [2.924067540644439]
A-GFN(Atomic GFlowNets)は、個々の原子をビルディングブロックとして活用し、薬物のような化学空間をより包括的に探索する基礎的な生成モデルである。
オフラインな薬物様分子データセットを用いた教師なし事前学習手法を提案する。
我々は、目標条件付き微調整プロセスを実装し、A-GFNを適応させて特定の目標特性に最適化する手法をさらに強化する。
論文 参考訳(メタデータ) (2024-09-15T11:42:17Z) - Decomposed Direct Preference Optimization for Structure-Based Drug Design [47.561983733291804]
本稿では,拡散モデルと医薬的ニーズを整合させる構造に基づく最適化手法であるDecompDPOを提案する。
DecompDPOは、様々なタンパク質ファミリーにまたがる分子生成のための微調整済み拡散モデルと、生成後に特定のタンパク質サブポケットを与える分子最適化の2つの主要な目的のために効果的に使用できる。
論文 参考訳(メタデータ) (2024-07-19T02:12:25Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiffは、事前訓練されたターゲット拡散モデルと望ましい機能特性を整合させる新しいフレームワークである。
最先端の結合エネルギーを持つ分子を最大7.07 Avg. Vina Scoreで生成することができる。
論文 参考訳(メタデータ) (2024-07-01T06:10:29Z) - Geometric-informed GFlowNets for Structure-Based Drug Design [4.8722087770556906]
我々は生成フローネットワーク(GFlowNets)を用いて、薬物様分子の広大な空間を探索する。
三角的に一貫した埋め込みを組み込むことにより,GFlowNetフレームワークに新たな改良を加える。
CrossDocked 2020を用いて行った実験では、生成された分子とタンパク質ポケットの結合親和性が改善された。
論文 参考訳(メタデータ) (2024-06-16T09:32:19Z) - PILOT: Equivariant diffusion for pocket conditioned de novo ligand generation with multi-objective guidance via importance sampling [8.619610909783441]
等変拡散モデル PILOT を用いて,$textitde novo$ で 3次元リガンド構造を生成するためのシリカ内アプローチを提案する。
その多目的的重要度サンプリング戦略は、モデルが望ましい特性を示す分子に向けられるよう設計されている。
我々はPILOTを用いて、Kinodata-3Dデータセットから未確認タンパク質ポケットの新しいメトリクスを生成する。
論文 参考訳(メタデータ) (2024-05-23T17:58:28Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOptは、制御可能・拡散モデルに基づく構造に基づく分子最適化手法である。
DecompOptは強いde novoベースラインよりも優れた特性を持つ分子を効率よく生成できることを示す。
論文 参考訳(メタデータ) (2024-03-07T02:53:40Z) - SE(3)-Stochastic Flow Matching for Protein Backbone Generation [54.951832422425454]
我々はFoldFlowを紹介した。FoldFlowは,3mathrmD$の剛性運動に対するフローマッチングパラダイムに基づく,モデリング能力向上のための新しい生成モデルである。
FoldFlow生成モデルのファミリーは、タンパク質の生成モデルに対する従来のアプローチよりもいくつかの利点を提供している。
論文 参考訳(メタデータ) (2023-10-03T19:24:24Z) - Balancing Exploration and Exploitation: Disentangled $\beta$-CVAE in De
Novo Drug Design [0.0]
分子グラフ$beta$-CVAEモデルを提案する。
我々はオクタノール水分配係数(ClogP)、モル屈折率(CMR)、薬物類似度(QED)、合成アクセシビリティスコア(SAS)を最適化した。
本モデルでは,両特性とも平均30.07%$pm$0.01%分子を生成した。
論文 参考訳(メタデータ) (2023-06-02T16:58:15Z) - Widely Used and Fast De Novo Drug Design by a Protein Sequence-Based
Reinforcement Learning Model [4.815696666006742]
構造に基づくde novo法は、薬物と標的の相互作用を深く生成するアーキテクチャに組み込むことによって、アクティブなデータ不足を克服することができる。
本稿では,医薬品発見のためのタンパク質配列に基づく拡張学習モデルについて紹介する。
概念実証として、RLモデルを用いて分子を4つのターゲットに設計した。
論文 参考訳(メタデータ) (2022-08-14T10:41:52Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
生成モデルと強化学習アプローチは、最初の成功をおさめたが、複数の薬物特性を同時に最適化する上で、依然として困難に直面している。
本稿では,MultI-Constraint MOlecule SAmpling (MIMOSA)アプローチ,初期推定として入力分子を用いるサンプリングフレームワーク,ターゲット分布からのサンプル分子を提案する。
論文 参考訳(メタデータ) (2020-10-05T20:18:42Z) - CogMol: Target-Specific and Selective Drug Design for COVID-19 Using
Deep Generative Models [74.58583689523999]
新規なウイルスタンパク質を標的とした新規な薬物様小分子を設計するためのエンド・ツー・エンドのフレームワークであるCogMolを提案する。
CogMolは、分子SMILES変分オートエンコーダ(VAE)の適応事前学習と、効率的なマルチ属性制御サンプリングスキームを組み合わせる。
CogMolは、高目標特異性と選択性を有する合成可能で低毒性な薬物様分子の多制約設計を扱う。
論文 参考訳(メタデータ) (2020-04-02T18:17:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。