論文の概要: Gene Regulatory Network Inference in the Presence of Selection Bias and Latent Confounders
- arxiv url: http://arxiv.org/abs/2501.10124v1
- Date: Fri, 17 Jan 2025 11:27:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:59:17.391670
- Title: Gene Regulatory Network Inference in the Presence of Selection Bias and Latent Confounders
- Title(参考訳): 選択バイアスと潜在共同設立者の存在下での遺伝子制御ネットワーク推論
- Authors: Gongxu Luo, Haoyue Dai, Boyang Sun, Loka Li, Biwei Huang, Petar Stojanov, Kun Zhang,
- Abstract要約: Gene Regulatory Network Inference (GRNI) は遺伝子発現データを用いて遺伝子間の因果関係を同定することを目的としている。
遺伝子発現は非コーディングRNAのような潜伏した共同設立者の影響を受けており、GRNIに複雑さを増す。
本稿では,選択バイアスと潜在的共同設立者の存在下でのGISL(Gene Regulatory Network Inference in the presence of Selection bias and Latent Confounders)を提案する。
- 参考スコア(独自算出の注目度): 14.626706466908386
- License:
- Abstract: Gene Regulatory Network Inference (GRNI) aims to identify causal relationships among genes using gene expression data, providing insights into regulatory mechanisms. A significant yet often overlooked challenge is selection bias, a process where only cells meeting specific criteria, such as gene expression thresholds, survive or are observed, distorting the true joint distribution of genes and thus biasing GRNI results. Furthermore, gene expression is influenced by latent confounders, such as non-coding RNAs, which add complexity to GRNI. To address these challenges, we propose GISL (Gene Regulatory Network Inference in the presence of Selection bias and Latent confounders), a novel algorithm to infer true regulatory relationships in the presence of selection and confounding issues. Leveraging data obtained via multiple gene perturbation experiments, we show that the true regulatory relationships, as well as selection processes and latent confounders can be partially identified without strong parametric models and under mild graphical assumptions. Experimental results on both synthetic and real-world single-cell gene expression datasets demonstrate the superiority of GISL over existing methods.
- Abstract(参考訳): Gene Regulatory Network Inference (GRNI)は、遺伝子発現データを用いて遺伝子間の因果関係を同定し、制御機構に関する洞察を提供することを目的としている。
選択バイアス(英: selection bias)とは、遺伝子発現閾値などの特定の基準を満たす細胞のみが生存または観察され、遺伝子の真の関節分布を歪め、GRNIの結果をバイアスするプロセスである。
さらに、遺伝子発現は、GRNIに複雑さをもたらす非コードRNAのような潜伏した共同設立者の影響を受けている。
これらの課題に対処するため,選択バイアスと潜在的共同設立者の存在下でのGISL(Gene Regulatory Network Inference in the presence of Selection bias and Latent Confounders)を提案する。
複数の遺伝子摂動実験によって得られたデータを利用して、厳密なパラメトリックモデルや軽度のグラフィカルな仮定なしに、真の規制関係、選択プロセス、潜在的共同創設者を部分的に識別できることを示す。
合成および実世界の単細胞遺伝子発現データセットによる実験結果は、既存の方法よりもGISLの方が優れていることを示す。
関連論文リスト
- Learning to Discover Regulatory Elements for Gene Expression Prediction [59.470991831978516]
Seq2Expは、ターゲット遺伝子発現を駆動する制御要素を発見し、抽出するために設計されたSequence to Expressionネットワークである。
本手法は, エピジェノミックシグナル, DNA 配列とその関連因子の因果関係を捉える。
論文 参考訳(メタデータ) (2025-02-19T03:25:49Z) - Cross-Attention Graph Neural Networks for Inferring Gene Regulatory Networks with Skewed Degree Distribution [9.919024883502322]
クロスアテンション複合デュアルグラフ埋め込みモデル(XATGRN)
我々のモデルは、様々なデータセットで既存の最先端メソッドよりも一貫して優れています。
論文 参考訳(メタデータ) (2024-12-18T10:56:40Z) - Gene Regulatory Network Inference from Pre-trained Single-Cell Transcriptomics Transformer with Joint Graph Learning [10.44434676119443]
単一細胞RNAシークエンシング(scRNA-seq)データから遺伝子制御ネットワーク(GRN)を推定することは複雑である。
本研究では,単一セルBERTを用いた事前学習型トランスモデル(scBERT)を活用することで,この問題に対処する。
本稿では,単一セル言語モデルによって学習されたリッチな文脈表現と,GRNで符号化された構造化知識を組み合わせた,新しい共同グラフ学習手法を提案する。
論文 参考訳(メタデータ) (2024-07-25T16:42:08Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - GENER: A Parallel Layer Deep Learning Network To Detect Gene-Gene
Interactions From Gene Expression Data [0.7660368798066375]
本稿では,遺伝子発現データを用いた遺伝子関係の同定専用に設計された並列層深層学習ネットワークを提案する。
本モデルでは,BioGRIDとDREAM5の組み合わせによる平均AUROCスコア0.834を達成し,遺伝子間相互作用を予測する競合手法よりも優れていた。
論文 参考訳(メタデータ) (2023-10-05T15:45:53Z) - Genetic heterogeneity analysis using genetic algorithm and network
science [2.6166087473624318]
ゲノムワイド・アソシエーション(GWAS)は、疾患に感受性のある遺伝的変数を同定することができる。
遺伝的効果に絡み合った遺伝的変数は、しばしば低い効果サイズを示す。
本稿では,FCSNet(Feature Co-Selection Network)という,GWASのための新しい特徴選択機構を提案する。
論文 参考訳(メタデータ) (2023-08-12T01:28:26Z) - DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with
GFlowNets [81.75973217676986]
遺伝子調節ネットワーク(GRN)は、遺伝子発現と細胞機能を制御する遺伝子とその産物間の相互作用を記述する。
既存の方法は、チャレンジ(1)、ダイナミックスから循環構造を識別すること、あるいはチャレンジ(2)、DAGよりも複雑なベイズ後部を学習することに焦点を当てるが、両方ではない。
本稿では、RNAベロシティ技術を用いて遺伝子発現の「速度」を推定できるという事実を活用し、両方の課題に対処するアプローチを開発する。
論文 参考訳(メタデータ) (2023-02-08T16:36:40Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - Granger causal inference on DAGs identifies genomic loci regulating
transcription [77.58911272503771]
GrID-Netは、DBG構造化システムにおけるGranger因果推論のためのラタグメッセージパッシングを備えたグラフニューラルネットワークに基づくフレームワークである。
我々の応用は、特定の遺伝子の調節を仲介するゲノム座を同定する単一セルマルチモーダルデータの解析である。
論文 参考訳(メタデータ) (2022-10-18T21:15:10Z) - A Novel Granular-Based Bi-Clustering Method of Deep Mining the
Co-Expressed Genes [76.84066556597342]
ビクラスタリング法は、サンプル(遺伝子)のサブセットが試験条件下で協調的に制御されるバイクラスタをマイニングするために用いられる。
残念ながら、従来の二クラスタ法はそのような二クラスタを発見するのに完全には効果がない。
本稿では,グラニュラーコンピューティングの理論を取り入れた新しい2クラスタリング手法を提案する。
論文 参考訳(メタデータ) (2020-05-12T02:04:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。