論文の概要: Investigating Deep Neural Network Architecture and Feature Extraction
Designs for Sensor-based Human Activity Recognition
- arxiv url: http://arxiv.org/abs/2310.03760v1
- Date: Tue, 26 Sep 2023 14:55:32 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-15 14:45:38.968625
- Title: Investigating Deep Neural Network Architecture and Feature Extraction
Designs for Sensor-based Human Activity Recognition
- Title(参考訳): センサに基づく人間活動認識のためのディープニューラルネットワークアーキテクチャと特徴抽出設計に関する研究
- Authors: Danial Ahangarani, Mohammad Shirazi, Navid Ashraf
- Abstract要約: 様々な領域にわたるディープラーニングの有効性が証明されたことを踏まえ、アクティビティ認識の課題に取り組むために多くのディープメソッドが検討されている。
一般的なディープラーニングと機械学習の手法と、異なる学習メカニズムの性能について検討する。
センサ時系列データから抽出した様々な特徴表現と,その有効性を測定した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The extensive ubiquitous availability of sensors in smart devices and the
Internet of Things (IoT) has opened up the possibilities for implementing
sensor-based activity recognition. As opposed to traditional sensor time-series
processing and hand-engineered feature extraction, in light of deep learning's
proven effectiveness across various domains, numerous deep methods have been
explored to tackle the challenges in activity recognition, outperforming the
traditional signal processing and traditional machine learning approaches. In
this work, by performing extensive experimental studies on two human activity
recognition datasets, we investigate the performance of common deep learning
and machine learning approaches as well as different training mechanisms (such
as contrastive learning), and various feature representations extracted from
the sensor time-series data and measure their effectiveness for the human
activity recognition task.
- Abstract(参考訳): スマートデバイスとIoT(Internet of Things)におけるセンサの広範な普及により、センサベースのアクティビティ認識を実装する可能性が開けた。
従来のセンサ時系列処理や手作業による特徴抽出とは対照的に,さまざまな領域にわたるディープラーニングの有効性が証明されたため,従来の信号処理や従来の機械学習アプローチよりも優れたアクティビティ認識の課題に取り組むために,多くのディープメソッドが検討されている。
本研究では,2つの人間行動認識データセットに関する広範囲な実験研究を行い,センサ時系列データから抽出した異なる学習機構(コントラスト学習など)と各種特徴表現を用いて,一般的なディープラーニングおよび機械学習手法の性能を検証し,その人間行動認識タスクの有効性を測定した。
関連論文リスト
- Apprenticeship-Inspired Elegance: Synergistic Knowledge Distillation Empowers Spiking Neural Networks for Efficient Single-Eye Emotion Recognition [53.359383163184425]
本稿では, 効率的な単一眼球運動認識タスクに適した, マルチモーダル・シナジスティック知識蒸留方式を提案する。
この方法では、軽量で単調な学生スパイクニューラルネットワーク(SNN)が、イベントフレームマルチモーダル教師ネットワークから豊富な知識を抽出することができる。
論文 参考訳(メタデータ) (2024-06-20T07:24:47Z) - Know Thy Neighbors: A Graph Based Approach for Effective Sensor-Based
Human Activity Recognition in Smart Homes [0.0]
スマートホームにおけるヒューマンアクティビティ認識(HAR)のためのグラフ誘導ニューラルネットワーク手法を提案する。
スマートホームにおけるセンサネットワークを表す,より表現力のあるグラフ構造を学習することで,これを実現する。
本手法は,アテンション機構の適用により,個別の入力センサ計測を特徴空間にマッピングする。
論文 参考訳(メタデータ) (2023-11-16T02:43:13Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
次世代の機械学習システムは、物理的世界に対する知覚と相互作用に長けなければならない。
運動、熱、位置情報、深度、無線信号、ビデオ、オーディオからの知覚データは、物理環境の状態をモデル化するためにますます使われています。
既存の取り組みは、しばしば単一の感覚的モダリティまたは予測タスクに特化している。
本稿は、12のモダリティと8つの現実世界タスクから115万以上のサンプルを含む、これまでで最も拡張的で統一されたIoTベンチマークであるMultiIoTを提案する。
論文 参考訳(メタデータ) (2023-11-10T18:13:08Z) - A Real-time Human Pose Estimation Approach for Optimal Sensor Placement
in Sensor-based Human Activity Recognition [63.26015736148707]
本稿では,人間の行動認識に最適なセンサ配置の課題を解決するための新しい手法を提案する。
得られた骨格データは、最適なセンサ位置を特定するためのユニークな戦略を提供する。
本研究は,センサ配置の視覚的手法が従来のディープラーニング手法と同等の結果をもたらすことを示唆している。
論文 参考訳(メタデータ) (2023-07-06T10:38:14Z) - TASKED: Transformer-based Adversarial learning for human activity
recognition using wearable sensors via Self-KnowledgE Distillation [6.458496335718508]
本稿では,TASKED(Self-KnowledgE Distillation)を用いたウェアラブルセンサを用いた,トランスフォーマーに基づく人間行動認識のための新しい逆学習フレームワークを提案する。
提案手法では,教師なしの自己知識蒸留を採用し,訓練手順の安定性と人間の活動認識性能を向上させる。
論文 参考訳(メタデータ) (2022-09-14T11:08:48Z) - Classifying Human Activities with Inertial Sensors: A Machine Learning
Approach [0.0]
HAR(Human Activity Recognition)は、現在進行中の研究課題である。
医療サポート、スポーツ、フィットネス、ソーシャルネットワーキング、ヒューマン・コンピュータ・インタフェース、シニア・ケア、エンターテイメント、監視などの分野に応用されている。
スマートフォンの慣性センサデータを用いて,人間活動認識のための機械学習と深層学習のアプローチを検討した。
論文 参考訳(メタデータ) (2021-11-09T08:17:33Z) - Incremental Learning Techniques for Online Human Activity Recognition [0.0]
身体運動のオンライン予測のためのヒューマンアクティビティ認識(HAR)手法を提案する。
我々は,監視ソフトウェアを含むHARシステムと加速度計とジャイロスコープデータを収集するモバイルアプリケーションを開発する。
この研究で6つの漸進的学習アルゴリズムが採用され、オフラインのHARシステムの開発によく使用されるバッチ学習アルゴリズムと比較される。
論文 参考訳(メタデータ) (2021-09-20T11:33:09Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
本稿では,視覚・センサ・モダリティ(動画)における行動認識を強化するためのフレームワーク,Semantics-Aware Adaptive Knowledge Distillation Networks (SAKDN)を提案する。
SAKDNは複数のウェアラブルセンサーを教師のモダリティとして使用し、RGB動画を学生のモダリティとして使用している。
論文 参考訳(メタデータ) (2020-09-01T03:38:31Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z) - Deep Learning for Sensor-based Human Activity Recognition: Overview,
Challenges and Opportunities [52.59080024266596]
本稿では,センサを用いた人間の活動認識のための最先端のディープラーニング手法について調査する。
まず、官能データのマルチモーダリティを導入し、公開データセットに情報を提供する。
次に、課題によって深層メソッドを構築するための新しい分類法を提案する。
論文 参考訳(メタデータ) (2020-01-21T09:55:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。