論文の概要: AURO: Reinforcement Learning for Adaptive User Retention Optimization in Recommender Systems
- arxiv url: http://arxiv.org/abs/2310.03984v2
- Date: Tue, 11 Feb 2025 09:07:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 20:34:24.714079
- Title: AURO: Reinforcement Learning for Adaptive User Retention Optimization in Recommender Systems
- Title(参考訳): AURO:Recommenderシステムにおける適応型ユーザ保持最適化のための強化学習
- Authors: Zhenghai Xue, Qingpeng Cai, Bin Yang, Lantao Hu, Peng Jiang, Kun Gai, Bo An,
- Abstract要約: 強化学習(Reinforcement Learning, RL)は、レコメンデーションシステムにおけるユーザ保持の最適化能力に注目が集まっている。
本稿では,この課題に対処するため,textbfAdaptive textbfUser textbfRetention textbfOptimization (AURO) という新しいアプローチを提案する。
- 参考スコア(独自算出の注目度): 25.18963930580529
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of Reinforcement Learning (RL) has garnered increasing attention for its ability of optimizing user retention in recommender systems. A primary obstacle in this optimization process is the environment non-stationarity stemming from the continual and complex evolution of user behavior patterns over time, such as variations in interaction rates and retention propensities. These changes pose significant challenges to existing RL algorithms for recommendations, leading to issues with dynamics and reward distribution shifts. This paper introduces a novel approach called \textbf{A}daptive \textbf{U}ser \textbf{R}etention \textbf{O}ptimization (AURO) to address this challenge. To navigate the recommendation policy in non-stationary environments, AURO introduces an state abstraction module in the policy network. The module is trained with a new value-based loss function, aligning its output with the estimated performance of the current policy. As the policy performance of RL is sensitive to environment drifts, the loss function enables the state abstraction to be reflective of environment changes and notify the recommendation policy to adapt accordingly. Additionally, the non-stationarity of the environment introduces the problem of implicit cold start, where the recommendation policy continuously interacts with users displaying novel behavior patterns. AURO encourages exploration guarded by performance-based rejection sampling to maintain a stable recommendation quality in the cost-sensitive online environment. Extensive empirical analysis are conducted in a user retention simulator, the MovieLens dataset, and a live short-video recommendation platform, demonstrating AURO's superior performance against all evaluated baseline algorithms.
- Abstract(参考訳): 強化学習(Reinforcement Learning, RL)の分野は、レコメンデーションシステムにおけるユーザ保持の最適化能力に注目が集まっている。
この最適化プロセスにおける主な障害は、相互作用率の変動や保持率の変動など、時間の経過とともにユーザー行動パターンの連続的かつ複雑な進化から生じる非定常性である。
これらの変更は、リコメンデーションのための既存のRLアルゴリズムに重大な課題をもたらし、ダイナミクスの問題と報奨分布シフトにつながります。
本稿では、この課題に対処するために、新しいアプローチである \textbf{A}daptive \textbf{U}ser \textbf{R}etention \textbf{O}ptimization (AURO)を提案する。
非定常環境でのレコメンデーションポリシーをナビゲートするために、AUROはポリシーネットワークに状態抽象化モジュールを導入している。
モジュールは、新しい値ベースの損失関数でトレーニングされ、その出力と現在のポリシーの見積のパフォーマンスを一致させる。
RLの政策性能は環境ドリフトに敏感であるため、損失関数により環境変化を反映した状態抽象化が可能となり、それに応じてレコメンデーションポリシーを通知する。
さらに、環境の非定常性は暗黙のコールドスタートの問題を導入し、推奨ポリシーは新規な行動パターンを表示するユーザと継続的に対話する。
AUROは、コスト感受性のあるオンライン環境において、安定したレコメンデーション品質を維持するために、パフォーマンスベースのリジェクションサンプリングによって保護された探索を奨励する。
ユーザ保持シミュレータ、MovieLensデータセット、ライブショートビデオレコメンデーションプラットフォームで大規模な実験分析を行い、評価されたベースラインアルゴリズムすべてに対してAUROの優れたパフォーマンスを示す。
関連論文リスト
- Provable Zero-Shot Generalization in Offline Reinforcement Learning [55.169228792596805]
ゼロショット一般化特性(ZSG)を用いたオフライン強化学習について検討する。
既存の研究によると、古典的なオフラインRLは新しい、目に見えない環境に一般化できなかった。
PERM と PPPO はともに,ZSG による準最適政策を見出すことができることを示す。
論文 参考訳(メタデータ) (2025-03-11T02:44:32Z) - Large Language Model driven Policy Exploration for Recommender Systems [50.70228564385797]
静的ユーザデータに基づいてトレーニングされたオフラインRLポリシは、動的オンライン環境にデプロイされた場合、分散シフトに対して脆弱である。
オンラインRLベースのRSも、トレーニングされていないポリシーや不安定なポリシーにユーザをさらけ出すリスクがあるため、運用デプロイメントの課題に直面している。
大規模言語モデル(LLM)は、ユーザー目標と事前学習ポリシーをオフラインで模倣する有望なソリューションを提供する。
LLMから抽出したユーザの嗜好を利用した対話型学習ポリシー(iALP)を提案する。
論文 参考訳(メタデータ) (2025-01-23T16:37:44Z) - Contractive Dynamical Imitation Policies for Efficient Out-of-Sample Recovery [3.549243565065057]
模倣学習(imitation learning)は、専門家の行動からポリシーを学ぶための、データ駆動型アプローチである。
OOS(Out-of-sample)領域では信頼性の低い結果が出る傾向がある。
本稿では,契約型力学系をモデルとした政策学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-10T14:28:18Z) - Survival of the Fittest: Evolutionary Adaptation of Policies for Environmental Shifts [0.15889427269227555]
進化ゲーム理論(EGT)にインスパイアされた適応的再学習アルゴリズムを開発する。
ERPOは、ポリシー適応の高速化、平均報酬の向上、およびポリシー適応の計算コストの削減を示す。
論文 参考訳(メタデータ) (2024-10-22T09:29:53Z) - Hierarchical Reinforcement Learning for Temporal Abstraction of Listwise Recommendation [51.06031200728449]
我々はmccHRLと呼ばれる新しいフレームワークを提案し、リストワイドレコメンデーションにおける時間的抽象化のレベルを異なるものにする。
階層的な枠組みの中では、ハイレベルエージェントがユーザ知覚の進化を研究し、低レベルエージェントがアイテム選択ポリシーを作成している。
その結果,本手法による性能改善は,いくつかのよく知られたベースラインと比較して有意な結果が得られた。
論文 参考訳(メタデータ) (2024-09-11T17:01:06Z) - CSRec: Rethinking Sequential Recommendation from A Causal Perspective [25.69446083970207]
シーケンシャルなレコメンデータシステム(RecSys)の本質は、ユーザが意思決定を行う方法を理解することです。
我々は、CSRec(Causal Sequential Recommendation)と呼ばれる、シーケンシャルレコメンデーションの新しい定式化を提案する。
CSRecは、シーケンシャルなコンテキスト内で推奨項目が受け入れられる確率を予測し、現在の決定がどのようになされるかをバックトラックすることを目的としている。
論文 参考訳(メタデータ) (2024-08-23T23:19:14Z) - Preference Elicitation for Offline Reinforcement Learning [59.136381500967744]
オフラインの嗜好に基づく強化学習アルゴリズムであるSim-OPRLを提案する。
本アルゴリズムは,配当外データに対する悲観的アプローチと,最適方針に関する情報的嗜好を得るための楽観的アプローチを用いる。
論文 参考訳(メタデータ) (2024-06-26T15:59:13Z) - A Conservative Approach for Few-Shot Transfer in Off-Dynamics Reinforcement Learning [3.1515473193934778]
オフダイナミックス強化学習(英語: Off-dynamics Reinforcement Learning)は、ソース環境から、異なるが類似したダイナミクスによって特徴づけられるターゲット環境へポリシーを移そうとする。
我々は近年のImitation Learningと保守的RLアルゴリズムの進歩に触発された革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-24T13:09:08Z) - Adversarial Batch Inverse Reinforcement Learning: Learn to Reward from
Imperfect Demonstration for Interactive Recommendation [23.048841953423846]
我々は、強化学習の基礎となる報奨学習の問題に焦点をあてる。
従来のアプローチでは、報酬を得るための追加の手順を導入するか、最適化の複雑さを増大させる。
所望の特性を実現するために, バッチ逆強化学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-30T13:43:20Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
我々は、まず、フィッシャー・マージング法をシークエンシャル・レコメンデーションに適用し、それに関連する実践的な課題に対処し、解決する。
提案手法の有効性を実証し, シーケンシャルラーニングおよびレコメンデーションシステムにおける最先端化の可能性を明らかにする。
論文 参考訳(メタデータ) (2023-07-05T05:58:56Z) - Generative Slate Recommendation with Reinforcement Learning [49.75985313698214]
強化学習アルゴリズムは、レコメンデータシステムのユーザエンゲージメントを最適化するために使用することができる。
しかし、RLアプローチはスレートレコメンデーションシナリオでは難解である。
この設定では、アクションはアイテムの組み合わせを含むことができるスレートに対応する。
本研究では,変分オートエンコーダによって学習された連続低次元ラテント空間におけるスレートの符号化を提案する。
我々は、(i)以前の作業で要求される仮定を緩和し、(ii)完全なスレートをモデル化することで、アクション選択の品質を向上させることができる。
論文 参考訳(メタデータ) (2023-01-20T15:28:09Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
近年の研究では、フィードバックループが推奨品質を損なう可能性があり、ユーザの振る舞いを均質化している。
本稿では、因果推論を用いてフィードバックループを確実に破壊するアルゴリズムCAFLを提案する。
従来の補正手法と比較して,CAFLは推奨品質を向上することを示す。
論文 参考訳(メタデータ) (2022-07-04T17:58:39Z) - D2RLIR : an improved and diversified ranking function in interactive
recommendation systems based on deep reinforcement learning [0.3058685580689604]
本稿では,アクタ・クリティカルアーキテクチャを用いた深層強化学習に基づく推薦システムを提案する。
提案モデルでは,ユーザの嗜好に基づいて,多様かつ関連性の高いレコメンデーションリストを生成することができる。
論文 参考訳(メタデータ) (2021-10-28T13:11:29Z) - Variance Reduction based Experience Replay for Policy Optimization [3.0790370651488983]
Variance Reduction Experience Replay (VRER) は、政策勾配推定を改善するために、関連するサンプルを選択的に再利用するためのフレームワークである。
VRERは、VRERによるポリシーグラディエントとして知られる、効率的な非政治学習アルゴリズムの基盤となる。
論文 参考訳(メタデータ) (2021-10-17T19:28:45Z) - Improving Long-Term Metrics in Recommendation Systems using
Short-Horizon Offline RL [56.20835219296896]
セッションベースのレコメンデーションシナリオについて検討し、シーケンシャルなインタラクションの間、ユーザに対してアイテムを推薦し、長期的なユーティリティを改善する。
我々は、セッション間のポリシーによる分散シフトを近似するショートホライズンポリシー改善(SHPI)と呼ばれる新しいバッチRLアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-06-01T15:58:05Z) - Multi-Objective SPIBB: Seldonian Offline Policy Improvement with Safety
Constraints in Finite MDPs [71.47895794305883]
オフライン強化学習環境における制約下での安全政策改善(SPI)の問題について検討する。
本稿では,異なる報酬信号に対するトレードオフを扱うアルゴリズムのユーザの好みを考慮した,このRL設定のためのSPIを提案する。
論文 参考訳(メタデータ) (2021-05-31T21:04:21Z) - Deep Reinforcement Learning amidst Lifelong Non-Stationarity [67.24635298387624]
政治以外のRLアルゴリズムは、寿命の長い非定常性に対処できることを示す。
提案手法は潜在変数モデルを用いて,現在および過去の経験から環境表現を学習する。
また, 生涯の非定常性を示すシミュレーション環境もいくつか導入し, 環境変化を考慮しないアプローチを著しく上回っていることを実証的に確認した。
論文 参考訳(メタデータ) (2020-06-18T17:34:50Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
逐次レコメンデーションにおける文脈情報の影響を明示的にモデル化するためのMFGAN(Multi-Factor Generative Adversarial Network)を提案する。
当社のフレームワークは,複数種類の因子情報を組み込むことが柔軟であり,各因子が推奨決定にどのように貢献するかを時間とともに追跡することができる。
論文 参考訳(メタデータ) (2020-05-21T12:28:59Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
制約強化強化学習(RL)フレームワークを提案する。
具体的には,ユーザの過去の嗜好に反するレコメンデーションを検出するために,識別器を利用する。
提案するフレームワークは汎用的であり,制約付きテキスト生成のタスクにさらに拡張されている。
論文 参考訳(メタデータ) (2020-05-04T16:23:34Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
個人再識別のための教師なし領域適応手法を提案する。
実験結果から,ktCUDA法とSHRED法は,再同定性能において,+5.7 mAPの平均的改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-01-14T17:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。