Loading atoms from a large magnetic trap to a small intra-cavity dipole
trap
- URL: http://arxiv.org/abs/2310.04199v1
- Date: Fri, 6 Oct 2023 12:33:14 GMT
- Title: Loading atoms from a large magnetic trap to a small intra-cavity dipole
trap
- Authors: D. Varga, B. G\'abor, B. S\'ark\"ozi, K. V. Adwaith, D. Nagy A. Dombi,
T. W. Clark, F. I. B. Williams, P. Domokos, and A. Vukics
- Abstract summary: We show that an optimized loading of a cold ensemble of rubidium-87 atoms from a magnetic trap can be efficient despite the large volume mismatch of the traps.
We demonstrate state-independent trapping by applying a repumper laser.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that an optimized loading of a cold ensemble of rubidium-87 atoms
from a magnetic trap into an optical dipole trap sustained by a single,
far-red-detuned mode of a high-Q optical cavity can be efficient despite the
large volume mismatch of the traps. The magnetically trapped atoms are
magnetically transported to the vicinity of the cavity mode and released from
the magnetic trap in a controlled way meanwhile undergoing an evaporation
period. Large number of atoms get trapped in the dipole potential for several
hundreds of milliseconds. We monitor the number of atoms in the mode volume by
a second tone of the cavity close to the atomic resonance. While this probe
tone can pump atoms to another ground state uncoupled to the probe, we
demonstrate state-independent trapping by applying a repumper laser.
Related papers
- Diamagnetic micro-chip traps for levitated nanoparticle entanglement experiments [0.0]
Quantum Gravity Mediated Entanglement (QGEM) protocol offers a novel method to probe the quantumness of gravitational interactions at non-relativistic scales.
We propose using magnetic traps based on micro-fabricated wires to trap nanoparticles for interferometric entanglement experiments.
arXiv Detail & Related papers (2024-11-04T17:48:32Z) - Pushing single atoms near an optical cavity [0.0]
Optical scattering force is used to reduce the loading time of single atoms to a cavity mode.
We observe in real time that, when the push beam is illuminated against gravity, single atoms slow down and turn around in the mode.
arXiv Detail & Related papers (2024-03-05T14:55:17Z) - Superconducting microsphere magnetically levitated in an anharmonic
potential with integrated magnetic readout [0.0]
We levitate a 700ng $sim 1017$amu superconducting microsphere in a magnetic chip trap.
We measure the particle's center-of-mass motion using a DC-SQUID magnetometer.
We characterize motional-amplitude-dependent frequency shifts, which arise from trap anharmonicities.
arXiv Detail & Related papers (2022-10-24T17:59:56Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - An electrically-driven single-atom `flip-flop' qubit [43.55994393060723]
Quantum information is encoded in the electron-nuclear states of a phosphorus donor.
Results pave the way to the construction of solid-state quantum processors.
arXiv Detail & Related papers (2022-02-09T13:05:12Z) - Motion-induced radiation due to an atom in the presence of a graphene
plane [62.997667081978825]
We study the motion-induced radiation due to the non-relativistic motion of an atom in the presence of a static graphene plate.
We show that the effect of the plate is to increase the probability of emission when the atom is near the plate and oscillates along a direction perpendicular to it.
arXiv Detail & Related papers (2021-04-15T14:15:23Z) - Site-dependent selection of atoms for homogeneous atom-cavity coupling [0.0]
We select atoms by imposing an AC Stark shift on the ground state hyperfine microwave transition frequency with light injected into the cavity.
We induce a spin flip with microwaves that are resonant for atoms that are near maximally coupled to the cavity mode of interest, after which, we use radiation pressure forces to remove from the cavity all the atoms in the initial spin state.
arXiv Detail & Related papers (2021-04-02T19:05:19Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Multimode-polariton superradiance via Floquet engineering [55.41644538483948]
We consider an ensemble of ultracold bosonic atoms within a near-planar cavity, driven by a far detuned laser.
We show that a strong, dispersive atom-photon coupling can be reached for many transverse cavity modes at once.
The resulting Floquet polaritons involve a superposition of a set of cavity modes with a density of excitation of the atomic cloud.
arXiv Detail & Related papers (2020-11-24T19:00:04Z) - Collective self-trapping of atoms in a cavity [0.0]
We show that the trap requires a collective action of the atoms, i.e. a single atom would not be trapped under the same laser drive conditions.
The atoms pull the frequency of the mode closer to resonance, thereby allowing the necessary light intensity for trapping into the cavity.
arXiv Detail & Related papers (2020-11-20T15:11:12Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.