Robust probabilistic inference via a constrained transport metric
- URL: http://arxiv.org/abs/2303.10085v1
- Date: Fri, 17 Mar 2023 16:10:06 GMT
- Title: Robust probabilistic inference via a constrained transport metric
- Authors: Abhisek Chakraborty, Anirban Bhattacharya, Debdeep Pati
- Abstract summary: We offer a novel alternative by constructing an exponentially tilted empirical likelihood carefully designed to concentrate near a parametric family of distributions.
The proposed approach finds applications in a wide variety of robust inference problems, where we intend to perform inference on the parameters associated with the centering distribution.
We demonstrate superior performance of our methodology when compared against state-of-the-art robust Bayesian inference methods.
- Score: 8.85031165304586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Flexible Bayesian models are typically constructed using limits of large
parametric models with a multitude of parameters that are often
uninterpretable. In this article, we offer a novel alternative by constructing
an exponentially tilted empirical likelihood carefully designed to concentrate
near a parametric family of distributions of choice with respect to a novel
variant of the Wasserstein metric, which is then combined with a prior
distribution on model parameters to obtain a robustified posterior. The
proposed approach finds applications in a wide variety of robust inference
problems, where we intend to perform inference on the parameters associated
with the centering distribution in presence of outliers. Our proposed transport
metric enjoys great computational simplicity, exploiting the Sinkhorn
regularization for discrete optimal transport problems, and being inherently
parallelizable. We demonstrate superior performance of our methodology when
compared against state-of-the-art robust Bayesian inference methods. We also
demonstrate equivalence of our approach with a nonparametric Bayesian
formulation under a suitable asymptotic framework, testifying to its
flexibility. The constrained entropy maximization that sits at the heart of our
likelihood formulation finds its utility beyond robust Bayesian inference; an
illustration is provided in a trustworthy machine learning application.
Related papers
- A variational Bayes approach to debiased inference for low-dimensional parameters in high-dimensional linear regression [2.7498981662768536]
We propose a scalable variational Bayes method for statistical inference in sparse linear regression.
Our approach relies on assigning a mean-field approximation to the nuisance coordinates.
This requires only a preprocessing step and preserves the computational advantages of mean-field variational Bayes.
arXiv Detail & Related papers (2024-06-18T14:27:44Z) - Nonparametric Automatic Differentiation Variational Inference with
Spline Approximation [7.5620760132717795]
We develop a nonparametric approximation approach that enables flexible posterior approximation for distributions with complicated structures.
Compared with widely-used nonparametrical inference methods, the proposed method is easy to implement and adaptive to various data structures.
Experiments demonstrate the efficiency of the proposed method in approximating complex posterior distributions and improving the performance of generative models with incomplete data.
arXiv Detail & Related papers (2024-03-10T20:22:06Z) - Leveraging Self-Consistency for Data-Efficient Amortized Bayesian Inference [9.940560505044122]
We propose a method to improve the efficiency and accuracy of amortized Bayesian inference.
We estimate the marginal likelihood based on approximate representations of the joint model.
arXiv Detail & Related papers (2023-10-06T17:41:41Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
Control over distributions' properties, such as parameters, symmetry and modality yield a family of flexible distributions.
We empirically validate our approach by utilizing our proposed distributions within a variational autoencoder and a latent space network model.
arXiv Detail & Related papers (2022-04-20T21:25:21Z) - Evaluating Sensitivity to the Stick-Breaking Prior in Bayesian
Nonparametrics [85.31247588089686]
We show that variational Bayesian methods can yield sensitivities with respect to parametric and nonparametric aspects of Bayesian models.
We provide both theoretical and empirical support for our variational approach to Bayesian sensitivity analysis.
arXiv Detail & Related papers (2021-07-08T03:40:18Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
Variational Inference (VI) is a popular alternative to exact sampling in Bayesian inference.
Importance sampling (IS) is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures.
We propose a novel combination of optimization and sampling techniques for approximate Bayesian inference.
arXiv Detail & Related papers (2021-06-30T11:00:24Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Continuous Regularized Wasserstein Barycenters [51.620781112674024]
We introduce a new dual formulation for the regularized Wasserstein barycenter problem.
We establish strong duality and use the corresponding primal-dual relationship to parametrize the barycenter implicitly using the dual potentials of regularized transport problems.
arXiv Detail & Related papers (2020-08-28T08:28:06Z) - Misspecification-robust likelihood-free inference in high dimensions [13.934999364767918]
We introduce an extension of the popular Bayesian optimisation based approach to approximate discrepancy functions in a probabilistic manner.
Our approach achieves computational scalability for higher dimensional parameter spaces by using separate acquisition functions and discrepancies for each parameter.
The method successfully performs computationally efficient inference in a 100-dimensional space on canonical examples and compares favourably to existing modularised ABC methods.
arXiv Detail & Related papers (2020-02-21T16:06:11Z) - Distributed Averaging Methods for Randomized Second Order Optimization [54.51566432934556]
We consider distributed optimization problems where forming the Hessian is computationally challenging and communication is a bottleneck.
We develop unbiased parameter averaging methods for randomized second order optimization that employ sampling and sketching of the Hessian.
We also extend the framework of second order averaging methods to introduce an unbiased distributed optimization framework for heterogeneous computing systems.
arXiv Detail & Related papers (2020-02-16T09:01:18Z) - Lifted Hybrid Variational Inference [31.441922284854893]
We investigate two approximate lifted variational approaches that are applicable to hybrid domains.
We demonstrate that the proposed variational methods are both scalable and can take advantage of approximate model symmetries.
We present a sufficient condition for the Bethe approximation to yield a non-trivial estimate over the marginal polytope.
arXiv Detail & Related papers (2020-01-08T22:29:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.