論文の概要: The Impact of Equal Opportunity on Statistical Discrimination
- arxiv url: http://arxiv.org/abs/2310.04585v1
- Date: Fri, 6 Oct 2023 20:57:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-12 17:31:07.197192
- Title: The Impact of Equal Opportunity on Statistical Discrimination
- Title(参考訳): 平等な機会が統計的差別に及ぼす影響
- Authors: John Y. Zhu
- Abstract要約: 契約可能な信念は、企業がグループ間で真の正の利率を等しくする決定ポリシーを選択することを要求できるようにする。
これにより、規制機関のツールキットは、肯定的な行動のような信念のない規制を越えて拡張される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: I modify the canonical statistical discrimination model of Coate and Loury
(1993) by assuming the firm's belief about an individual's unobserved class is
machine learning-generated and, therefore, contractible. This expands the
toolkit of a regulator beyond belief-free regulations like affirmative action.
Contractible beliefs make it feasible to require the firm to select a decision
policy that equalizes true positive rates across groups -- what the algorithmic
fairness literature calls equal opportunity. While affirmative action does not
necessarily end statistical discrimination, I show that imposing equal
opportunity does.
- Abstract(参考訳): 私は、Coate and Loury(1993)の標準統計識別モデルを変更し、個人の未観測クラスに対する会社の信念が機械学習によって生成され、従って契約可能であると仮定する。
これにより、肯定的な行動のような信念のない規制を超えて、レギュレータのツールキットを広げる。
契約可能な信念は、アルゴリズム的公正性文学が「平等機会」と呼ぶ、グループ間で真の正の利率を等しくする決定ポリシーを選択することを、企業が要求することを容易にする。
肯定的な行動は必ずしも統計的差別を終わらせるわけではないが、私は平等な機会を与えることが示している。
関連論文リスト
- The Flawed Foundations of Fair Machine Learning [0.0]
統計的に正確な結果と類似した結果とのトレードオフが存在することを示す。
本稿では,統計的に正確な結果とグループ類似の結果の関係を理解する上で,研究者やデザイナーを支援するための概念実証手法を提案する。
論文 参考訳(メタデータ) (2023-06-02T10:07:12Z) - Counterfactually Fair Regression with Double Machine Learning [0.0]
本稿では,Double Machine Learning (DML) Fairnessを提案する。
回帰問題における反ファクト的公平性の問題を因果推論における反ファクト的結果の推定問題に類似させる。
本研究は、職場雇用における差別に関するシミュレーション研究におけるアプローチと、法学部学生のGPAを推定する実データへの適用を実証する。
論文 参考訳(メタデータ) (2023-03-21T01:28:23Z) - Measuring Equality in Machine Learning Security Defenses: A Case Study
in Speech Recognition [56.69875958980474]
この研究は、学習したシステムを守るためのアプローチと、異なるサブ人口間でのセキュリティ防衛がパフォーマンス上の不平等をもたらす方法を検討する。
提案された多くの手法は、虚偽の拒絶やロバストネストレーニングの不平等といった直接的な害を引き起こす可能性がある。
本稿では, ランダム化スムースメントとニューラルリジェクションの2つの防御法の比較を行い, マイノリティ集団のサンプリング機構により, ランダム化スムースメントがより公平であることを見出した。
論文 参考訳(メタデータ) (2023-02-17T16:19:26Z) - Counterfactual Fair Opportunity: Measuring Decision Model Fairness with
Counterfactual Reasoning [5.626570248105078]
本研究は,不注意条件下での公正な場合において,反実的推論を用いて不公平なモデル行動を明らかにすることを目的とする。
対物フェアという対物機会の対物バージョンを定義し、対物サンプルのセンシティブな情報を分析する2つの新しい指標を紹介した。
論文 参考訳(メタデータ) (2023-02-16T09:13:53Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - Fairness and Randomness in Machine Learning: Statistical Independence
and Relativization [10.482805367361818]
我々は、機械学習で日常的に使われている公平性とランダム性の概念における統計的独立性の役割を識別する。
我々は、ランダム性と公正性は、機械学習におけるモデリング仮定として、その性質を反映すべきであると主張している。
論文 参考訳(メタデータ) (2022-07-27T15:55:05Z) - Optimising Equal Opportunity Fairness in Model Training [60.0947291284978]
既存のデバイアス法、例えば、敵の訓練や、表現から保護された情報を取り除くことは、バイアスを減らすことが示されている。
2つの新たな学習目標を提案し,2つの分類課題における高い性能を維持しつつ,バイアスの低減に有効であることを示す。
論文 参考訳(メタデータ) (2022-05-05T01:57:58Z) - Towards Equal Opportunity Fairness through Adversarial Learning [64.45845091719002]
逆行訓練は、自然言語処理におけるバイアス緩和の一般的なアプローチである。
本稿では、よりリッチな特徴を生み出すために、ターゲットクラスをインプットとして利用する、対位訓練のための拡張判別器を提案する。
論文 参考訳(メタデータ) (2022-03-12T02:22:58Z) - Statistical discrimination in learning agents [64.78141757063142]
統計的差別は、訓練人口のバイアスとエージェントアーキテクチャの両方の関数としてエージェントポリシーに現れる。
我々は、リカレントニューラルネットワークを使用するエージェントによる差別の低減と、トレーニング環境のバイアスの低減が示される。
論文 参考訳(メタデータ) (2021-10-21T18:28:57Z) - fairadapt: Causal Reasoning for Fair Data Pre-processing [2.1915057426589746]
因果推論前処理方式を実装したR-package fairadaptについて記述する。
結果に対する感度特性から特定の因果経路が識別できないと仮定する適切な緩和について論じる。
論文 参考訳(メタデータ) (2021-10-19T18:48:28Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
機械学習の台頭における投機は、機械学習モデルによる決定が公正かどうかである。
本稿では,未ラベルデータのラベルを予測するための擬似ラベリングを含む,前処理フェーズにおける公平な半教師付き学習の枠組みを提案する。
偏見、分散、ノイズの理論的分解分析は、半教師付き学習における差別の異なる源とそれらが公平性に与える影響を浮き彫りにする。
論文 参考訳(メタデータ) (2020-09-25T05:48:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。