論文の概要: Harnessing the Power of Large Language Models for Empathetic Response
Generation: Empirical Investigations and Improvements
- arxiv url: http://arxiv.org/abs/2310.05140v2
- Date: Tue, 21 Nov 2023 11:28:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 04:39:24.006717
- Title: Harnessing the Power of Large Language Models for Empathetic Response
Generation: Empirical Investigations and Improvements
- Title(参考訳): 共感応答生成のための大規模言語モデルのパワー活用--実証的研究と改善
- Authors: Yushan Qian, Wei-Nan Zhang, Ting Liu
- Abstract要約: 本研究では,大規模言語モデル(LLM)の共感応答生成における性能について実験的に検討する。
大規模な実験により, LLMは提案手法の利点を大いに生かし, 自動評価と人的評価の両方で最先端の性能を達成できることが示されている。
- 参考スコア(独自算出の注目度): 32.177860810612074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Empathetic dialogue is an indispensable part of building harmonious social
relationships and contributes to the development of a helpful AI. Previous
approaches are mainly based on fine small-scale language models. With the
advent of ChatGPT, the application effect of large language models (LLMs) in
this field has attracted great attention. This work empirically investigates
the performance of LLMs in generating empathetic responses and proposes three
improvement methods of semantically similar in-context learning, two-stage
interactive generation, and combination with the knowledge base. Extensive
experiments show that LLMs can significantly benefit from our proposed methods
and is able to achieve state-of-the-art performance in both automatic and human
evaluations. Additionally, we explore the possibility of GPT-4 simulating human
evaluators.
- Abstract(参考訳): 共感的対話は、調和した社会的関係を構築するのに必要な部分であり、有用なAIの開発に寄与する。
従来のアプローチは主に小さな言語モデルに基づいていた。
ChatGPTの出現により、この分野における大規模言語モデル(LLM)の適用効果に大きな注目を集めている。
本研究は,共感応答生成におけるllmの性能を実証的に検討し,意味的に類似する文脈内学習,2段階対話生成,知識ベースとの組合せによる3つの改善手法を提案する。
大規模な実験により, LLM は提案手法の利点を大いに生かし, 自動評価と人的評価の両面で最先端の性能を達成することができることがわかった。
また,GPT-4によるヒト評価の可能性についても検討した。
関連論文リスト
- Self-Evolved Reward Learning for LLMs [45.6910747154447]
RLHF(Reinforcement Learning from Human Feedback)は、言語モデルと人間の嗜好を整合させる重要な手法である。
本稿では、RMが反復的に自己改善するための追加のトレーニングデータを生成する新しいアプローチである自己進化リワード学習(SER:Self-Evolved Reward Learning)を提案する。
以上の結果から,人間による注釈付きデータであっても,自己フィードバックから学習することで,RM性能が向上することが示唆された。
論文 参考訳(メタデータ) (2024-11-01T07:29:03Z) - Seeing Eye to AI: Human Alignment via Gaze-Based Response Rewards for Large Language Models [46.09562860220433]
暗黙のフィードバック(特に眼球追跡(ET)データ)をReward Model(RM)に統合する新しいフレームワークであるGazeRewardを紹介します。
提案手法は、確立された人間の嗜好データセット上でのRMの精度を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-02T13:24:56Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
複雑なタスク解決のためのLarge Language Models(LLM)に基づくヒューマンエージェントコラボレーションの問題を紹介する。
Reinforcement Learning-based Human-Agent Collaboration method, ReHACを提案する。
このアプローチには、タスク解決プロセスにおける人間の介入の最も急進的な段階を決定するために設計されたポリシーモデルが含まれている。
論文 参考訳(メタデータ) (2024-02-20T11:03:36Z) - Improving Agent Interactions in Virtual Environments with Language
Models [0.9790236766474201]
本研究は、Minecraftデータセットにおける集合的なビルディング割り当てに焦点を当てる。
我々は,最先端手法によるタスク理解を強化するために,言語モデリングを採用している。
論文 参考訳(メタデータ) (2024-02-08T06:34:11Z) - Detecting Any Human-Object Interaction Relationship: Universal HOI
Detector with Spatial Prompt Learning on Foundation Models [55.20626448358655]
本研究では,ビジョン・ランゲージ(VL)基礎モデルと大規模言語モデル(LLM)を用いて,オープンワールド環境におけるユニバーサルインタラクション認識について検討する。
我々の設計にはHO Prompt-guided Decoder (HOPD) が含まれており、基礎モデルにおける高次関係表現と画像内の様々なHOペアとの結合を容易にする。
オープンカテゴリの対話認識では,対話文と解釈文の2つのタイプがサポートされている。
論文 参考訳(メタデータ) (2023-11-07T08:27:32Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
複数の言語モデルインスタンスが共通の最終回答に到達するために、複数のラウンドで個別の応答と推論プロセスを提案し、議論する言語応答を改善するための補完的なアプローチを提案する。
以上の結果から,本手法は様々なタスクにおける数学的・戦略的推論を著しく向上させることが示唆された。
我々のアプローチは、既存のブラックボックスモデルに直接適用され、調査するすべてのタスクに対して、同じ手順とプロンプトを使用することができる。
論文 参考訳(メタデータ) (2023-05-23T17:55:11Z) - Rethinking the Evaluation for Conversational Recommendation in the Era
of Large Language Models [115.7508325840751]
近年の大規模言語モデル(LLM)の成功は、より強力な対話レコメンデーションシステム(CRS)を開発する大きな可能性を示している。
本稿では,ChatGPTの会話レコメンデーションへの活用について検討し,既存の評価プロトコルが不十分であることを明らかにする。
LLMをベースとしたユーザシミュレータを用いた対話型評価手法iEvaLMを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:12:43Z) - Post Hoc Explanations of Language Models Can Improve Language Models [43.2109029463221]
AMPLIFY(Post Hoc Explanations)を用いたインコンテキスト学習の活用によるモデル性能向上のための新しいフレームワークを提案する。
我々は,各入力特徴がモデル予測に与える影響を抽出し,帰属スコア(説明)を出力するポストホック説明手法を活用する。
AMPLIFYは,幅広いタスクに対して約10~25%の精度向上を実現している。
論文 参考訳(メタデータ) (2023-05-19T04:46:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。