Text2NKG: Fine-Grained N-ary Relation Extraction for N-ary relational Knowledge Graph Construction
- URL: http://arxiv.org/abs/2310.05185v3
- Date: Wed, 30 Oct 2024 15:18:14 GMT
- Title: Text2NKG: Fine-Grained N-ary Relation Extraction for N-ary relational Knowledge Graph Construction
- Authors: Haoran Luo, Haihong E, Yuhao Yang, Tianyu Yao, Yikai Guo, Zichen Tang, Wentai Zhang, Kaiyang Wan, Shiyao Peng, Meina Song, Wei Lin, Yifan Zhu, Luu Anh Tuan,
- Abstract summary: Text2NKG is a novel fine-grained n-ary relation extraction framework for n-ary relational knowledge graph construction.
We introduce a span-tuple classification approach with hetero-ordered merging and output merging to accomplish fine-grained n-ary relation extraction in different arity.
- Score: 20.281505340983035
- License:
- Abstract: Beyond traditional binary relational facts, n-ary relational knowledge graphs (NKGs) are comprised of n-ary relational facts containing more than two entities, which are closer to real-world facts with broader applications. However, the construction of NKGs remains at a coarse-grained level, which is always in a single schema, ignoring the order and variable arity of entities. To address these restrictions, we propose Text2NKG, a novel fine-grained n-ary relation extraction framework for n-ary relational knowledge graph construction. We introduce a span-tuple classification approach with hetero-ordered merging and output merging to accomplish fine-grained n-ary relation extraction in different arity. Furthermore, Text2NKG supports four typical NKG schemas: hyper-relational schema, event-based schema, role-based schema, and hypergraph-based schema, with high flexibility and practicality. The experimental results demonstrate that Text2NKG achieves state-of-the-art performance in F1 scores on the fine-grained n-ary relation extraction benchmark. Our code and datasets are publicly available.
Related papers
- Language Models are Graph Learners [70.14063765424012]
Language Models (LMs) are challenging the dominance of domain-specific models, including Graph Neural Networks (GNNs) and Graph Transformers (GTs)
We propose a novel approach that empowers off-the-shelf LMs to achieve performance comparable to state-of-the-art GNNs on node classification tasks.
arXiv Detail & Related papers (2024-10-03T08:27:54Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - Unleashing the Potential of Text-attributed Graphs: Automatic Relation Decomposition via Large Language Models [31.443478448031886]
RoSE (Relation-oriented Semantic Edge-decomposition) is a novel framework that decomposes the graph structure by analyzing raw text attributes.
Our framework significantly enhances node classification performance across various datasets, with improvements of up to 16% on the Wisconsin dataset.
arXiv Detail & Related papers (2024-05-28T20:54:47Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - HIORE: Leveraging High-order Interactions for Unified Entity Relation
Extraction [85.80317530027212]
We propose HIORE, a new method for unified entity relation extraction.
The key insight is to leverage the complex association among word pairs, which contains richer information than the first-order word-by-word interactions.
Experiments show that HIORE achieves the state-of-the-art performance on relation extraction and an improvement of 1.11.8 F1 points over the prior best unified model.
arXiv Detail & Related papers (2023-05-07T14:57:42Z) - An entity-guided text summarization framework with relational
heterogeneous graph neural network [0.76146285961466]
Two crucial issues for text summarization are to make use of knowledge beyond text and to make use of cross-sentence relations in text.
This paper focuses on two issues by leveraging entities mentioned in text to connect GNN and KG for summarization.
arXiv Detail & Related papers (2023-02-07T02:27:21Z) - TransHER: Translating Knowledge Graph Embedding with Hyper-Ellipsoidal
Restriction [14.636054717485207]
We propose a novel score function TransHER for knowledge graph embedding.
Our model first maps entities onto two separate hyper-ellipsoids and then conducts a relation-specific translation on one of them.
Experimental results show that TransHER can achieve state-of-the-art performance and generalize to datasets in different domains and scales.
arXiv Detail & Related papers (2022-04-27T22:49:27Z) - Sparse Structure Learning via Graph Neural Networks for Inductive
Document Classification [2.064612766965483]
We propose a novel GNN-based sparse structure learning model for inductive document classification.
Our model collects a set of trainable edges connecting disjoint words between sentences and employs structure learning to sparsely select edges with dynamic contextual dependencies.
Experiments on several real-world datasets demonstrate that the proposed model outperforms most state-of-the-art results.
arXiv Detail & Related papers (2021-12-13T02:36:04Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Factorizable Graph Convolutional Networks [90.59836684458905]
We introduce a novel graph convolutional network (GCN) that explicitly disentangles intertwined relations encoded in a graph.
FactorGCN takes a simple graph as input, and disentangles it into several factorized graphs.
We evaluate the proposed FactorGCN both qualitatively and quantitatively on the synthetic and real-world datasets.
arXiv Detail & Related papers (2020-10-12T03:01:40Z) - Knowledge Embedding Based Graph Convolutional Network [35.35776808660919]
This paper proposes a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN)
KE-GCN combines the power of Graph Convolutional Network (GCN) in graph-based belief propagation and the strengths of advanced knowledge embedding methods.
Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases.
arXiv Detail & Related papers (2020-06-12T17:12:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.