Simplifying GNN Performance with Low Rank Kernel Models
- URL: http://arxiv.org/abs/2310.05250v1
- Date: Sun, 8 Oct 2023 17:56:30 GMT
- Title: Simplifying GNN Performance with Low Rank Kernel Models
- Authors: Luciano Vinas and Arash A. Amini
- Abstract summary: We revisit recent spectral GNN approaches to semi-supervised node classification (SSNC)
We show that recent performance improvements in GNN approaches may be partially attributed to shifts in evaluation conventions.
- Score: 14.304623719903972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We revisit recent spectral GNN approaches to semi-supervised node
classification (SSNC). We posit that many of the current GNN architectures may
be over-engineered. Instead, simpler, traditional methods from nonparametric
estimation, applied in the spectral domain, could replace many deep-learning
inspired GNN designs. These conventional techniques appear to be well suited
for a variety of graph types reaching state-of-the-art performance on many of
the common SSNC benchmarks. Additionally, we show that recent performance
improvements in GNN approaches may be partially attributed to shifts in
evaluation conventions. Lastly, an ablative study is conducted on the various
hyperparameters associated with GNN spectral filtering techniques. Code
available at: https://github.com/lucianoAvinas/lowrank-gnn-kernels
Related papers
- GNN-Ensemble: Towards Random Decision Graph Neural Networks [3.7620848582312405]
Graph Neural Networks (GNNs) have enjoyed wide spread applications in graph-structured data.
GNNs are required to learn latent patterns from a limited amount of training data to perform inferences on a vast amount of test data.
In this paper, we push one step forward on the ensemble learning of GNNs with improved accuracy, robustness, and adversarial attacks.
arXiv Detail & Related papers (2023-03-20T18:24:01Z) - Graph Neural Networks are Inherently Good Generalizers: Insights by
Bridging GNNs and MLPs [71.93227401463199]
This paper pinpoints the major source of GNNs' performance gain to their intrinsic capability, by introducing an intermediate model class dubbed as P(ropagational)MLP.
We observe that PMLPs consistently perform on par with (or even exceed) their GNN counterparts, while being much more efficient in training.
arXiv Detail & Related papers (2022-12-18T08:17:32Z) - Applications of Lattice Gauge Equivariant Neural Networks [0.0]
Lattice Gauge Equivariant Convolutional Neural Networks (L-CNNs)
L-CNNs can generalize better to differently sized lattices than traditional neural networks.
We present our progress on possible applications of L-CNNs to Wilson flow or continuous normalizing flow.
arXiv Detail & Related papers (2022-12-01T19:32:42Z) - A Comprehensive Study on Large-Scale Graph Training: Benchmarking and
Rethinking [124.21408098724551]
Large-scale graph training is a notoriously challenging problem for graph neural networks (GNNs)
We present a new ensembling training manner, named EnGCN, to address the existing issues.
Our proposed method has achieved new state-of-the-art (SOTA) performance on large-scale datasets.
arXiv Detail & Related papers (2022-10-14T03:43:05Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2022-08-15T22:30:07Z) - Parallel and Distributed Graph Neural Networks: An In-Depth Concurrency
Analysis [28.464210819376593]
Graph neural networks (GNNs) are among the most powerful tools in deep learning.
They routinely solve complex problems on unstructured networks, such as node classification, graph classification, or link prediction, with high accuracy.
However, both inference and training of GNNs are complex, and they uniquely combine the features of irregular graph processing with dense and regular computations.
This complexity makes it very challenging to execute GNNs efficiently on modern massively parallel architectures.
arXiv Detail & Related papers (2022-05-19T17:11:45Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - Permutation-equivariant and Proximity-aware Graph Neural Networks with
Stochastic Message Passing [88.30867628592112]
Graph neural networks (GNNs) are emerging machine learning models on graphs.
Permutation-equivariance and proximity-awareness are two important properties highly desirable for GNNs.
We show that existing GNNs, mostly based on the message-passing mechanism, cannot simultaneously preserve the two properties.
In order to preserve node proximities, we augment the existing GNNs with node representations.
arXiv Detail & Related papers (2020-09-05T16:46:56Z) - Bayesian Graph Neural Networks with Adaptive Connection Sampling [62.51689735630133]
We propose a unified framework for adaptive connection sampling in graph neural networks (GNNs)
The proposed framework not only alleviates over-smoothing and over-fitting tendencies of deep GNNs, but also enables learning with uncertainty in graph analytic tasks with GNNs.
arXiv Detail & Related papers (2020-06-07T07:06:35Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
Graph neural networks (GNNs) have received much attention recently because of their excellent performance on graph-based tasks.
We propose self-enhanced GNN (SEG), which improves the quality of the input data using the outputs of existing GNN models.
SEG consistently improves the performance of well-known GNN models such as GCN, GAT and SGC across different datasets.
arXiv Detail & Related papers (2020-02-18T12:27:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.