Distributed Evolution Strategies with Multi-Level Learning for Large-Scale Black-Box Optimization
- URL: http://arxiv.org/abs/2310.05377v4
- Date: Fri, 11 Oct 2024 11:08:05 GMT
- Title: Distributed Evolution Strategies with Multi-Level Learning for Large-Scale Black-Box Optimization
- Authors: Qiqi Duan, Chang Shao, Guochen Zhou, Minghan Zhang, Qi Zhao, Yuhui Shi,
- Abstract summary: We propose to parallelize the well-established covariance matrix adaptation evolution strategy (CMA-ES) and in particular its one latest LSO variant called limited-memory CMA-ES (LM-CMA)
We present a multilevel learning-based meta-framework for distributed LM-CMA. Owing to its hierarchically organized structure, Meta-ES is well-suited to implement our distributed meta-framework.
- Score: 13.750841199401613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the post-Moore era, main performance gains of black-box optimizers are increasingly depending on parallelism, especially for large-scale optimization (LSO). Here we propose to parallelize the well-established covariance matrix adaptation evolution strategy (CMA-ES) and in particular its one latest LSO variant called limited-memory CMA-ES (LM-CMA). To achieve efficiency while approximating its powerful invariance property, we present a multilevel learning-based meta-framework for distributed LM-CMA. Owing to its hierarchically organized structure, Meta-ES is well-suited to implement our distributed meta-framework, wherein the outer-ES controls strategy parameters while all parallel inner-ESs run the serial LM-CMA with different settings. For the distribution mean update of the outer-ES, both the elitist and multi-recombination strategy are used in parallel to avoid stagnation and regression, respectively. To exploit spatiotemporal information, the global step-size adaptation combines Meta-ES with the parallel cumulative step-size adaptation. After each isolation time, our meta-framework employs both the structure and parameter learning strategy to combine aligned evolution paths for CMA reconstruction. Experiments on a set of large-scale benchmarking functions with memory-intensive evaluations, arguably reflecting many data-driven optimization problems, validate the benefits (e.g., effectiveness w.r.t. solution quality, and adaptability w.r.t. second-order learning) and costs of our meta-framework.
Related papers
- ESSA: Evolutionary Strategies for Scalable Alignment [2.589791058467358]
This paper introduces ESSA, a new framework that uses Evolutionary Strategies (ES) to efficiently align Large Language Models (LLMs)<n>ES is well-suited for LLM alignment due to its favorable properties, such as high parallelizability, memory efficiency, robustness to sparse rewards, and fewer data samples required for convergence.<n>Our findings establish ES as a promising and scalable alternative to gradient-based alignment, paving the way for efficient post-training of large language models.
arXiv Detail & Related papers (2025-07-06T16:23:07Z) - Dynamic Context-oriented Decomposition for Task-aware Low-rank Adaptation with Less Forgetting and Faster Convergence [131.41894248194995]
We propose context-oriented decomposition adaptation (CorDA), a novel method that initializes adapters in a task-aware manner.<n>Thanks to the task awareness, our method enables two optional adaptation modes, knowledge-preserved mode (KPM) and instruction-previewed mode (IPM)
arXiv Detail & Related papers (2025-06-16T07:55:14Z) - Taming LLMs by Scaling Learning Rates with Gradient Grouping [49.91587150497186]
Training large language models (LLMs) poses challenges due to their massive scale and heterogeneous architectures.<n>This work introduces Scaling with Gradient Grouping (SGG), an gradient wrapper that improves adaptive learning rate estimation by dynamic grouping and group-specific scaling.
arXiv Detail & Related papers (2025-06-01T15:30:37Z) - Reinforced Model Merging [53.84354455400038]
We present an innovative framework termed Reinforced Model Merging (RMM), which encompasses an environment and agent tailored for merging tasks.
By utilizing data subsets during the evaluation process, we addressed the bottleneck in the reward feedback phase, thereby accelerating RMM by up to 100 times.
arXiv Detail & Related papers (2025-03-27T08:52:41Z) - Reinforcement Learning-based Self-adaptive Differential Evolution through Automated Landscape Feature Learning [7.765689048808507]
This paper introduces a novel MetaBBO method that supports automated feature learning during the meta-learning process.
We design an attention-based neural network with mantissa-exponent based embedding to transform the solution populations.
We also incorporate a comprehensive algorithm configuration space including diverse DE operators into a reinforcement learning-aided DAC paradigm.
arXiv Detail & Related papers (2025-03-23T13:07:57Z) - COSMOS: A Hybrid Adaptive Optimizer for Memory-Efficient Training of LLMs [81.01082659623552]
Large Language Models (LLMs) have demonstrated remarkable success across various domains.
Their optimization remains a significant challenge due to the complex and high-dimensional loss landscapes they inhabit.
arXiv Detail & Related papers (2025-02-24T18:42:19Z) - OPTISHEAR: Towards Efficient and Adaptive Pruning of Large Language Models via Evolutionary Optimization [18.57876883968734]
We introduce textbftextscOptiShear, an efficient evolutionary optimization framework for adaptive LLM pruning.
Our framework features two key innovations: an effective search space built on our Meta pruning metric, and a model-wise reconstruction error for rapid evaluation.
arXiv Detail & Related papers (2025-02-15T09:17:38Z) - Variable Metric Evolution Strategies for High-dimensional Multi-Objective Optimization [0.0]
We design a class of variable metric evolution strategies well suited for high-dimensional problems.
We target problems with many variables, not (necessarily) with many objectives.
arXiv Detail & Related papers (2024-12-20T08:05:42Z) - Towards Explainable Evolution Strategies with Large Language Models [0.0]
This paper introduces an approach that integrates self-adaptive Evolution Strategies (ES) with Large Language Models (LLMs)
By employing a self-adaptive ES equipped with a restart mechanism, we effectively navigate the challenging landscapes of benchmark functions.
An LLM is then utilized to process these logs, generating concise, user-friendly summaries.
arXiv Detail & Related papers (2024-07-11T09:28:27Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
This paper proposes a shift towards BP-free, zeroth-order (ZO) optimization as a solution for reducing memory costs during fine-tuning.
Unlike traditional ZO-SGD methods, our work expands the exploration to a wider array of ZO optimization techniques.
Our study unveils previously overlooked optimization principles, highlighting the importance of task alignment, the role of the forward gradient method, and the balance between algorithm complexity and fine-tuning performance.
arXiv Detail & Related papers (2024-02-18T14:08:48Z) - An Invariant Information Geometric Method for High-Dimensional Online
Optimization [9.538618632613714]
We introduce a full invariance oriented evolution strategies algorithm, derived from its corresponding framework.
We benchmark SynCMA against leading algorithms in Bayesian optimization and evolution strategies.
In all scenarios, SynCMA demonstrates great competence, if not dominance, over other algorithms in sample efficiency.
arXiv Detail & Related papers (2024-01-03T07:06:26Z) - BiERL: A Meta Evolutionary Reinforcement Learning Framework via Bilevel
Optimization [34.24884427152513]
We propose a general meta ERL framework via bilevel optimization (BiERL)
We design an elegant meta-level architecture that embeds the inner-level's evolving experience into an informative population representation.
We perform extensive experiments in MuJoCo and Box2D tasks to verify that as a general framework, BiERL outperforms various baselines and consistently improves the learning performance for a diversity of ERL algorithms.
arXiv Detail & Related papers (2023-08-01T09:31:51Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - Evolving Pareto-Optimal Actor-Critic Algorithms for Generalizability and
Stability [67.8426046908398]
Generalizability and stability are two key objectives for operating reinforcement learning (RL) agents in the real world.
This paper presents MetaPG, an evolutionary method for automated design of actor-critic loss functions.
arXiv Detail & Related papers (2022-04-08T20:46:16Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
We propose the first meta-learning paradigm in the Reproducing Kernel Hilbert Space (RKHS) induced by the meta-model's Neural Tangent Kernel (NTK)
Within this paradigm, we introduce two meta-learning algorithms, which no longer need a sub-optimal iterative inner-loop adaptation as in the MAML framework.
We achieve this goal by 1) replacing the adaptation with a fast-adaptive regularizer in the RKHS; and 2) solving the adaptation analytically based on the NTK theory.
arXiv Detail & Related papers (2021-02-07T20:53:23Z) - A Nested Bi-level Optimization Framework for Robust Few Shot Learning [10.147225934340877]
NestedMAML learns to assign weights to training tasks or instances.
Experiments on synthetic and real-world datasets demonstrate that NestedMAML efficiently mitigates the effects of "unwanted" tasks or instances.
arXiv Detail & Related papers (2020-11-13T06:41:22Z) - On the Global Optimality of Model-Agnostic Meta-Learning [133.16370011229776]
Model-a meta-learning (MAML) formulates meta-learning as a bilevel optimization problem, where the inner level solves each subtask based on a shared prior.
We characterize optimality of the stationary points attained by MAML for both learning and supervised learning, where the inner-level outer-level problems are solved via first-order optimization methods.
arXiv Detail & Related papers (2020-06-23T17:33:14Z) - Theoretical Convergence of Multi-Step Model-Agnostic Meta-Learning [63.64636047748605]
We develop a new theoretical framework to provide convergence guarantee for the general multi-step MAML algorithm.
In particular, our results suggest that an inner-stage step needs to be chosen inversely proportional to $N$ of inner-stage steps in order for $N$ MAML to have guaranteed convergence.
arXiv Detail & Related papers (2020-02-18T19:17:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.