論文の概要: Integration-free Training for Spatio-temporal Multimodal Covariate Deep
Kernel Point Processes
- arxiv url: http://arxiv.org/abs/2310.05485v1
- Date: Mon, 9 Oct 2023 07:44:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-12 06:59:22.973799
- Title: Integration-free Training for Spatio-temporal Multimodal Covariate Deep
Kernel Point Processes
- Title(参考訳): 時空間的多モーダル共変量深核点過程の積分フリートレーニング
- Authors: Yixuan Zhang, Quyu Kong, Feng Zhou
- Abstract要約: ディープ・ミックスチャ・ポイント・プロセス(Deep Mixture Point Processes、DKMPP)は、より柔軟なディープ・カーネルを用いて複雑な関係をモデル化するディープ・ミックスチャ・ポイント・プロセス(DMPP)の拡張版である。
DKMPPとそれに対応するスコアベース推定器がベースラインモデルより優れていることを示す。
- 参考スコア(独自算出の注目度): 25.564868041717908
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we propose a novel deep spatio-temporal point process model,
Deep Kernel Mixture Point Processes (DKMPP), that incorporates multimodal
covariate information. DKMPP is an enhanced version of Deep Mixture Point
Processes (DMPP), which uses a more flexible deep kernel to model complex
relationships between events and covariate data, improving the model's
expressiveness. To address the intractable training procedure of DKMPP due to
the non-integrable deep kernel, we utilize an integration-free method based on
score matching, and further improve efficiency by adopting a scalable denoising
score matching method. Our experiments demonstrate that DKMPP and its
corresponding score-based estimators outperform baseline models, showcasing the
advantages of incorporating covariate information, utilizing a deep kernel, and
employing score-based estimators.
- Abstract(参考訳): 本研究では,マルチモーダルな共変量情報を含む新しい深部時空間過程モデルであるDeep Kernel Mixture Point Processes (DKMPP)を提案する。
DKMPPはDeep Mixture Point Processes (DMPP)の拡張版であり、より柔軟なDeep kernelを使用してイベントと共変データの間の複雑な関係をモデル化し、モデルの表現性を向上させる。
非可積分深層カーネルによるdkmppの難解なトレーニング手順に対処するために,スコアマッチングに基づく統合フリー手法を活用し,スケーラブルな除音スコアマッチング手法を採用することにより,さらに効率を向上させる。
本研究は,dkmppとそれに対応するスコアベース推定器がベースラインモデルを上回ることを示し,共変量情報の導入,深いカーネルの利用,スコアベース推定器の利用の利点を示す。
関連論文リスト
- A Bayesian Approach to Data Point Selection [24.98069363998565]
データポイントの選択(DPS)は、ディープラーニングにおいて重要なトピックになりつつある。
既存のDPSへのアプローチは、主にバイレベル最適化(BLO)の定式化に基づいている。
DPSに対する新しいベイズ的アプローチを提案する。
論文 参考訳(メタデータ) (2024-11-06T09:04:13Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
本稿では,BMC という名前のペアデータにおけるブリッジ・アンド・モデリングの効果的なフレームワークを提案する。
目的の修正によって、ペアの選好信号の一貫性と情報性が向上する。
DPOだけではこれらの相関をモデル化し、ニュアンス付き変動を捉えるには不十分である。
論文 参考訳(メタデータ) (2024-08-14T11:29:47Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM)は、トレーニングフェーズ中にステップバイステップのフィードバックをLLMに提供する。
LLMの探索経路を最適化するために,PRMからのステップレベルのフィードバックを応用した欲求探索アルゴリズムを提案する。
提案手法の汎用性を探るため,コーディングタスクのステップレベル報酬データセットを自動生成する手法を開発し,コード生成タスクにおける同様の性能向上を観察する。
論文 参考訳(メタデータ) (2023-10-16T05:21:50Z) - Staged Depthwise Correlation and Feature Fusion for Siamese Object
Tracking [0.6827423171182154]
視覚的トラッキングのための特徴抽出をさらに最適化するために,DCFFNet という新たな段階的深度相関と特徴融合ネットワークを提案する。
シアムネットワークアーキテクチャに基づいてディープトラッカーを構築しており、複数の大規模データセットでゼロからトレーニングされたオフラインです。
OTB100,VOT2018,LaSOTなど,一般的なベンチマークにトラッカーを実装した。
論文 参考訳(メタデータ) (2023-10-15T06:04:42Z) - BatchGFN: Generative Flow Networks for Batch Active Learning [80.73649229919454]
BatchGFNは、生成フローネットワークを使用してバッチ報酬に比例したデータポイントのセットをサンプリングする、プールベースのアクティブラーニングのための新しいアプローチである。
提案手法は,おもちゃの回帰問題において,1点当たり1回の前方通過で推定時間に近距離最適効用バッチをサンプリングすることを可能にした。
論文 参考訳(メタデータ) (2023-06-26T20:41:36Z) - MDPose: Real-Time Multi-Person Pose Estimation via Mixture Density Model [27.849059115252008]
本稿では,人間のキーポイントの結合分布をモデル化し,一段階のインスタンス認識ポーズ推定手法を提案する。
我々のMDPoseは、人間のキーポイントの高次元の関節分布を学習し、最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-02-17T08:29:33Z) - Deep Combinatorial Aggregation [58.78692706974121]
ディープアンサンブル(Deep ensemble)は、不確実性を考慮した学習タスクの最先端結果を実現する、シンプルで効果的な方法である。
本研究では,ディープアグリゲーション(DCA)と呼ばれるディープアンサンブルの一般化について検討する。
DCAはネットワークコンポーネントの複数のインスタンスを生成し、それらの組み合わせを集約して、多様化したモデルの提案と予測を生成する。
論文 参考訳(メタデータ) (2022-10-12T17:35:03Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Unsupervised learning of disentangled representations in deep restricted
kernel machines with orthogonality constraints [15.296955630621566]
Constr-DRKMは、非教師なしデータ表現の学習のためのディープカーネル手法である。
本研究では,不整合特徴学習における提案手法の有効性を定量的に評価する。
論文 参考訳(メタデータ) (2020-11-25T11:40:10Z) - Wasserstein Learning of Determinantal Point Processes [14.790452282691252]
本稿では,観測された部分集合からなるモデルとデータ間のワッサーシュタイン距離を最小化する新しいDPP学習手法を提案する。
MLEを用いて学習したDPPと比較して,我々のWasserstein学習アプローチは,生成タスクにおける予測性能を著しく向上させることを示した。
論文 参考訳(メタデータ) (2020-11-19T08:30:57Z) - Deep Multimodal Fusion by Channel Exchanging [87.40768169300898]
本稿では,異なるモードのサブネットワーク間で動的にチャネルを交換するパラメータフリーマルチモーダル融合フレームワークを提案する。
このような交換プロセスの有効性は、畳み込みフィルタを共有してもBN層をモダリティで分離しておくことで保証される。
論文 参考訳(メタデータ) (2020-11-10T09:53:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。