論文の概要: A Survey of Large Language Models for Graphs
- arxiv url: http://arxiv.org/abs/2405.08011v3
- Date: Wed, 11 Sep 2024 07:31:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 20:57:55.915232
- Title: A Survey of Large Language Models for Graphs
- Title(参考訳): グラフ用大規模言語モデルの検討
- Authors: Xubin Ren, Jiabin Tang, Dawei Yin, Nitesh Chawla, Chao Huang,
- Abstract要約: 我々は、グラフ学習に適用された最新の最先端の大規模言語モデルについて、詳細なレビューを行う。
フレームワーク設計に基づいて既存の手法を分類する新しい分類法を提案する。
各フレームワークの長所と短所について検討し,今後の研究への可能性を強調する。
- 参考スコア(独自算出の注目度): 21.54279919476072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphs are an essential data structure utilized to represent relationships in real-world scenarios. Prior research has established that Graph Neural Networks (GNNs) deliver impressive outcomes in graph-centric tasks, such as link prediction and node classification. Despite these advancements, challenges like data sparsity and limited generalization capabilities continue to persist. Recently, Large Language Models (LLMs) have gained attention in natural language processing. They excel in language comprehension and summarization. Integrating LLMs with graph learning techniques has attracted interest as a way to enhance performance in graph learning tasks. In this survey, we conduct an in-depth review of the latest state-of-the-art LLMs applied in graph learning and introduce a novel taxonomy to categorize existing methods based on their framework design. We detail four unique designs: i) GNNs as Prefix, ii) LLMs as Prefix, iii) LLMs-Graphs Integration, and iv) LLMs-Only, highlighting key methodologies within each category. We explore the strengths and limitations of each framework, and emphasize potential avenues for future research, including overcoming current integration challenges between LLMs and graph learning techniques, and venturing into new application areas. This survey aims to serve as a valuable resource for researchers and practitioners eager to leverage large language models in graph learning, and to inspire continued progress in this dynamic field. We consistently maintain the related open-source materials at \url{https://github.com/HKUDS/Awesome-LLM4Graph-Papers}.
- Abstract(参考訳): グラフは、現実世界のシナリオにおける関係を表現するために使用される重要なデータ構造である。
従来の研究では、グラフニューラルネットワーク(GNN)が、リンク予測やノード分類といったグラフ中心のタスクにおいて、驚くべき結果をもたらすことが確認されている。
これらの進歩にもかかわらず、データスパシティや限定的な一般化能力といった課題は引き続き続く。
近年,Large Language Models (LLM) が自然言語処理に注目されている。
彼らは言語理解と要約に長けている。
グラフ学習タスクのパフォーマンス向上手段として,LLMとグラフ学習技術の統合が注目されている。
本稿では,グラフ学習に適用された最新のLLMの詳細なレビューを行い,そのフレームワーク設計に基づいて既存の手法を分類する新しい分類法を提案する。
我々は4つのユニークなデザインを詳述する。
一 プリフィックスとしてのGNN
二 プレフィックスとしてのLLM
三 LLMs-Graphs の統合及び
四 LLMs-第一に、各カテゴリの主要な方法論を強調すること。
各フレームワークの長所と短所について検討し、LLMとグラフ学習技術の現在の統合課題を克服し、新しいアプリケーション分野に進出するなど、将来の研究への潜在的な道のりを強調する。
本調査は,グラフ学習における大規模言語モデルの活用を熱望する研究者や実践者にとって貴重な資源であり,このダイナミックな分野の継続的な進歩を促すことを目的としている。
我々は,関連するオープンソース資料を<url{https://github.com/HKUDS/Awesome-LLM4Graph-Papers} で一貫して管理している。
関連論文リスト
- NT-LLM: A Novel Node Tokenizer for Integrating Graph Structure into Large Language Models [26.739650151993928]
グラフは、現実世界のシナリオにおける関係を表現するための基本的なデータ構造である。
グラフ関連のタスクにLLM(Large Language Models)を適用することは、大きな課題となる。
我々は,グラフ構造を効率的にエンコードする新しいフレームワークNT-LLM(Node Tokenizer for Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-10-14T17:21:57Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
この研究は、グラフパターンタスクにおける大規模言語モデルの能力を評価するためのベンチマークを導入する。
我々は,LLMが用語的記述と位相的記述の両方に基づいて,グラフパターンを理解できるかどうかを評価するベンチマークを開発した。
私たちのベンチマークでは、合成データセットと実際のデータセットの両方と、11のタスクと7のモデルで構成されています。
論文 参考訳(メタデータ) (2024-10-04T04:48:33Z) - Graph Machine Learning in the Era of Large Language Models (LLMs) [44.25731266093967]
グラフは、ソーシャルネットワーク、知識グラフ、分子発見など、さまざまな領域における複雑な関係を表現する上で重要な役割を果たす。
ディープラーニングの出現に伴い、グラフニューラルネットワーク(GNN)がグラフ機械学習(Graph ML)の基盤として登場した。
近年、LLMは言語タスクにおいて前例のない能力を示し、コンピュータビジョンやレコメンデータシステムなど様々なアプリケーションで広く採用されている。
論文 参考訳(メタデータ) (2024-04-23T11:13:39Z) - A Survey of Large Language Models on Generative Graph Analytics: Query, Learning, and Applications [4.777453721753589]
大規模言語モデル(LLM)は、様々なNLPおよびマルチモードタスクを扱う強力な一般化能力を示した。
グラフ学習モデルと比較して、LLMはグラフタスクの一般化の課題に対処する上で、優れたアドバンテージを持っている。
LLM-based generative graph analysis (LLM-GGA) の重要な問題点を3つのカテゴリで検討した。
論文 参考訳(メタデータ) (2024-04-23T07:39:24Z) - Exploring the Potential of Large Language Models in Graph Generation [51.046188600990014]
グラフ生成は、与えられたプロパティを持つグラフを生成するために、大きな言語モデル(LLM)を必要とする。
本稿では,LLMのグラフ生成能力について,系統的なタスク設計と実験による検討を行う。
評価の結果,LLM,特にGPT-4は,グラフ生成タスクに予備的能力を示すことがわかった。
論文 参考訳(メタデータ) (2024-03-21T12:37:54Z) - Large Language Models on Graphs: A Comprehensive Survey [77.16803297418201]
グラフ上の大規模言語モデルに関連するシナリオとテクニックを体系的にレビューする。
まず,LLMをグラフに適用する可能性シナリオを,純グラフ,テキスト分散グラフ,テキストペアグラフの3つのカテゴリにまとめる。
本稿では,そのような手法の現実的な応用について論じ,オープンソースコードとベンチマークデータセットを要約する。
論文 参考訳(メタデータ) (2023-12-05T14:14:27Z) - A Survey of Graph Meets Large Language Model: Progress and Future Directions [38.63080573825683]
大規模言語モデル(LLM)は、様々な領域で大きな成功を収めています。
LLMはグラフ関連タスクに活用され、従来のグラフニューラルネットワーク(GNN)ベースの手法を超越している。
論文 参考訳(メタデータ) (2023-11-21T07:22:48Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
大規模言語モデル (LLMs) が最前線として登場し、様々なアプリケーションにおいて非並列の長所を示している。
LLMとグラフ構造化データを組み合わせることは、非常に興味深いトピックです。
本稿では、そのような統合を2つの主要なカテゴリに分岐する。
論文 参考訳(メタデータ) (2023-10-09T07:59:34Z) - Exploring the Potential of Large Language Models (LLMs) in Learning on
Graphs [59.74814230246034]
大規模言語モデル(LLM)は、広範な共通知識と強力な意味理解能力を持つことが証明されている。
LLMs-as-EnhancersとLLMs-as-Predictorsの2つのパイプラインについて検討する。
論文 参考訳(メタデータ) (2023-07-07T05:31:31Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
重要なイノベーションは、機能として説明を使用することで、下流タスクにおけるGNNのパフォーマンス向上に利用できます。
提案手法は、確立されたTAGデータセットの最先端結果を実現する。
本手法はトレーニングを著しく高速化し,ogbn-arxivのベースラインに最も近い2.88倍の改善を実現した。
論文 参考訳(メタデータ) (2023-05-31T03:18:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。