論文の概要: Reinforcement learning for freeform robot design
- arxiv url: http://arxiv.org/abs/2310.05670v2
- Date: Fri, 1 Mar 2024 19:20:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-05 20:21:12.501207
- Title: Reinforcement learning for freeform robot design
- Title(参考訳): 自由形ロボット設計のための強化学習
- Authors: Muhan Li, David Matthews, Sam Kriegman
- Abstract要約: 任意の外部構造と内部構造を持つ自由形ロボットを設計するためのポリシー勾配を示す。
これは、原子構造ブロックの束を堆積または除去して、付属物、臓器、空洞のような高いレベルの非パラメトリックマクロ構造を形成する作用によって達成される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inspired by the necessity of morphological adaptation in animals, a growing
body of work has attempted to expand robot training to encompass physical
aspects of a robot's design. However, reinforcement learning methods capable of
optimizing the 3D morphology of a robot have been restricted to reorienting or
resizing the limbs of a predetermined and static topological genus. Here we
show policy gradients for designing freeform robots with arbitrary external and
internal structure. This is achieved through actions that deposit or remove
bundles of atomic building blocks to form higher-level nonparametric
macrostructures such as appendages, organs and cavities. Although results are
provided for open loop control only, we discuss how this method could be
adapted for closed loop control and sim2real transfer to physical machines in
future.
- Abstract(参考訳): 動物の形態素適応の必要性に触発されて、ロボットの設計の物理的側面を包含するロボットトレーニングの拡大を試みている。
しかし、ロボットの3次元形態を最適化できる強化学習法は、所定の静的なトポロジーの四肢を再配置または再配置するために制限されている。
ここでは,任意の外部構造と内部構造を持つフリーフォームロボットを設計するためのポリシー勾配を示す。
これは原子構成要素の束を沈着または除去し、付加物、器官、空洞のような高レベルの非パラメトリックなマクロ構造を形成する作用によって達成される。
提案手法は開ループ制御にのみ適用されるが,将来的には閉ループ制御やsim2real の物理機械への転送にどのように適用できるかを論じる。
関連論文リスト
- Body Transformer: Leveraging Robot Embodiment for Policy Learning [51.531793239586165]
ボディートランスフォーマー(ボディートランスフォーマー、Body Transformer、BoT)は、学習プロセスを導く誘導バイアスを提供することで、ロボットの体現性を活用するアーキテクチャである。
我々はロボットの体をセンサーとアクチュエータのグラフとして表現し、建築全体を通してプール情報にマスキングされた注意を頼りにしている。
結果として得られるアーキテクチャは、バニラ変換器と古典的な多層パーセプトロンを、タスク完了、スケーリング特性、計算効率の点で上回る。
論文 参考訳(メタデータ) (2024-08-12T17:31:28Z) - Evolution and learning in differentiable robots [0.0]
我々は、異なるシミュレーションを用いて、多数の候補体計画において、行動の個々の神経制御を迅速かつ同時に最適化する。
個体群における各ロボットの機械的構造の変化は,探索の外ループに遺伝的アルゴリズムを適用した。
シミュレーションで発見された非常に微分可能な形態の1つは、物理ロボットとして実現され、その最適化された振る舞いを維持できた。
論文 参考訳(メタデータ) (2024-05-23T15:45:43Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - DittoGym: Learning to Control Soft Shape-Shifting Robots [30.287452037945542]
我々は、その生涯で形態を変えることができるロボットとして定義された、再構成可能な新しいロボットを探索する。
再構成可能なソフトロボットの制御を高次元強化学習(RL)問題として定式化する。
細かな形態変化を必要とするソフトロボットのための総合的なRLベンチマークであるDittoGymを紹介する。
論文 参考訳(メタデータ) (2024-01-24T05:03:05Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
本稿では,様々なタスクにおいて優れたソフトロボット形態を生成する物理拡張拡散モデルであるDiffuseBotを提案する。
我々は、その能力とともに、シミュレーションされた、そして製造された様々なロボットを紹介します。
論文 参考訳(メタデータ) (2023-11-28T18:58:48Z) - Leveraging Hyperbolic Embeddings for Coarse-to-Fine Robot Design [40.01142267374432]
マルチセルロボットの設計は、多様なタスクを実行するために効率的に制御できる多数のセルからなるロボットを作ることを目的としている。
これまでの研究では、さまざまなタスクのためのロボットを生成する能力が実証されてきたが、これらのアプローチは、広大なデザイン空間でロボットを直接最適化することが多い。
本稿では,多細胞ロボットを設計するための新しい粗粒化手法を提案する。
論文 参考訳(メタデータ) (2023-11-01T11:56:32Z) - Universal Morphology Control via Contextual Modulation [52.742056836818136]
異なるロボット形態をまたいだ普遍的なポリシーの学習は、継続的な制御における学習効率と一般化を著しく向上させることができる。
既存の手法では、グラフニューラルネットワークやトランスフォーマーを使用して、異種状態と異なる形態のアクション空間を処理する。
本稿では,この依存関係を文脈変調によりモデル化する階層型アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-22T00:04:12Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
本研究では,運動学や形態学など,異なるパラメータを持つ2つの異なるロボット間でポリシーを伝達する問題を考察する。
模倣学習手法を含む動作や状態遷移の分布を一致させることで、新しいポリシーを訓練する既存のアプローチは、最適な動作や/または状態分布が異なるロボットでミスマッチしているために失敗する。
本稿では,物理シミュレータに実装されたロボット政策伝達に連続的進化モデルを用いることで,$RevolveR$という新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T18:50:25Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
強化学習手法は、重要な性能を達成できるが、同じロボットプラットフォームで収集される大量のトレーニングデータを必要とする。
私たちはそれを、さまざまなロボットプラットフォームで共有される共通の構造を捉えるモデルを見つけることを目標とする、数ショットのメタラーニング問題として定式化します。
我々は,400個のロボットを用いて,実ロボットピッキング作業とシミュレーションリーチの枠組みを実験的に評価した。
論文 参考訳(メタデータ) (2021-03-05T14:16:20Z) - Diversity-based Design Assist for Large Legged Robots [4.505477982701834]
高さ約2mの大型脚ロボットの設計空間を探索するが、その設計と構造はよく研究されていない。
新たなロボットエンコーディングにより、足が体の長さに沿ってスケーリングするなど、バイオインスパイアされた特徴を実現できる。
論文 参考訳(メタデータ) (2020-04-17T03:59:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。